
RD-8138 809 A SYNTAX DIRECTED EDITOR ENVIRONMENT(U) AIR FORCE INST i/2
OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING

-3 9 J R KOSLOW 05 DEC 83 RFIT/GCSMR/83D-3

UNCLASSIFIED F/G 9/2 NLEhhnhhhhhhliE
EhhhhhhhhhhhhE
mhhhhhhhh/hhhE
mhhhhhhIhhhhhE
IIIIIIIIIIIIIE
EllhllllIIIIhE
Ehhhh___. hm hhhhEEm,

I~ L3 ILI
Q

1111 i.8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-I963-A

-- 7 _J -7 -P -i -1 _1 U-b e- .m rr _.m

,. 4m
°

e l

O OF

A SYNTAX
DIRECTED EDITOR

ENVIRONMENT

THESIS

AFIT/GCS/MA/83D-3 John R. Koslow

2Lt USAF

-" DTIC
ELECTE
FEB 2 11984

. DEPARTMENT OF THE AIR FORCE 4

AIR UNIVERSITY D
AIR FORCE INSTITUTE OF TECHNOLOGY

SWright-Patterson Air Force Base, Ohio

DWISTRIUTION STATEMENT A0
Approved for pinhlic rele'mse; , 02 i 6

D istribution ti ,ii. t. d

.2Z .770 _-A*,

, o. ~ • ~ .

AFIT/GCS/MS/83D-3

, Accession For

NIfS - GRA& II) -
DTIC TAB
Unannounced

- Justification

Distribution/

* Availability Codes
Avail and/ar

Disj Special

A SYNTAX
DIRECTED EDITOR

ENVIRONMENT

.THESIS

AFIT/GCS/MA/83D-3 John R. Koslow

2Lt USAF

4'

DTIC
.4, ELECTES FEB 211984.

Approved for public release; distribution unlimited.

. ,...":

*40: .,,..":'." : .-. ::':'..:-.'::.: ''.,'

AFIT/GC/MA/83D-3

A SYNTAX

,' DIRECTED EDITOR

ENVIRONMENT

4

THESIS

PRESENTED TO THE FACULTY OF THE SCHOOL OF ENGINEERING

OF THE AIR FORCE INSTITUTE OF TECHNOLOGY

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTERS OF SCIENCE IN COMPUTER SCIENCE

by

John R. Koslow

2Lt USAF

Graduate Computer Science

5 December 1983

Approved for public release, distribution unlimited.

5%

"' "" " " " " " " " " " " " ""*" ' ' " " " ""' -.. ,. . -,- -. ,..,

'(.~. PREFACE

This document describes the implementation and modification of a software

development environment for a medium size computer system based on a syntax

directed editor. It was developed for use in writing programs in the ADA

programming language, but can be used for any language which can be described

using extended BNF notation.

This effort is a follow on effort to work done by Captain Scott

. Ferguson at the Air Force Institute of Technology. It consists of

modifications and extensions to the prototype environment he developed. His

work is cited in the bibliography.

I would like to thank my advisors for their high level of expectation which

required my best effort to satisfy. Thanks also to my special friends who put

Qup with a person who had nothing but computers on his mind, and to my

parents who have always given me support.

John R. Koslow

V.

AFIT/GCS/MA/83D-3

ABSTRACT

This document describes the implementation and modification of a software

development environment for a medium size computer based on a syntax

directed editor. Although it was developed for use with the ADA programming

language, most of the environment is driven by a language syntax description,

and can therefore process virtually any current or futurc, programming language.

This environment is an extension of a prototype developed previously at the Air

Force Institute of Technology.

I

.,4

- ~ ~ ~ ~ ~ ~ ~ ~ F J-.at S - -- .

TABLE OF CONTENTS
1. Introduction 1

1.1. Syntax Directed Editor 1
1.2. Other Tools in the Environment 2
1.3. A Look Forward 2

2. Syntax Directed Editors 4

2.1. Why syntax directed editors? 4
2.2. SYNDE 5

3. System Design 7

3.1. Overall Environment 7
3.2. Current Development 7
3.3. Long Range Goals 8
3.4. User Friendliness 8

4. System Development 9

4.1. Assembling the source code 9
4.2. Integration of display package 10
4.3. Interfaces between tools 11
4.4. Tool Independence 11
4.5. Individual tools 12

5. Syntax Tree Background 13

5.1. BNF Syntax Description 134) 5.2. The Syntax Tree 14
5.3. Program tree display 14

5.3.1. The Extended Cursor 15
5.3.2. Display Selection 18
5.3.3. Display implementation 21

6. SYNDE 24

6.1. Program tree synthesis 24
6.1.1. Creating the tree 24
6.1.2. Modifying the tree 32

6.2. Tool development 34

7. META 36

7.1. Tool development 36
7.2. Meta Syntax Description 36
7.3. Language Subsets 37
7.4. META Conversions 38

. Other Tools 40

8.1. Config 40
8.1.1. Tool Development 40
8.1.2. General information 41
8.1.3. Input command sequences 41

-. r' ' " " ' " . ",% ,' .. """ '" ""''.. - . . -. ,,-'',"""... . . " .. ,"-".,"-'...,'-",._.-, ',.' .,

'," I.. ,, ,' , ... *,,,, ,' , . ., ,.. , . ,,.', . - -- _ . _ . ., ',, _' ' o

8.1.4. Output command sequences 42
8.2. Lister 42

9. Conclusions and Recommendations 45

9.1. Conclusions 45
9.2. Recommendations 46

9.2.1. Conversion of code to ADA 46
9.2.2. Incremental compilation 46
9.2.3. Multi-tasking 47
9.2.4. Program documentation 47
9.2.5. User interface improvements 48

BIBLIOGRAPHY 50

Appendix I. META SYNTAX DESCRIPTION LANGUAGE 51

Appendix II. META DESCRIPTION FOR ADA 53

Appendix III. META DESCRIPTION FOR ADAO 74

Appendix IV. SYSTEM USER MANUAL 78

IV.1. Introductory Manual 78
IV.2. Syntax Directed Editor Manual 82
IV.3. Terminal Configuration Manual 89
IV.4. Meta Preprocessor 92

Appendix V. GLOSSARY 990

ds'

S.rn

, -,,,J , .. -*.* , .:,. o. . -*' "o7* 7. 4 °- 7.. ",".q * W " 'o - - - - " " ° " Jz, " ' .] -" '.1 ,,

Fr Po LIST OF FIGURES

:- Figure 5-1: Point cursor display 16
Figure 5-2: Extended cursor display 17
Figure 5-3: Focus at "decl" node 18
Figure 5-4: Display after "right" command, 18
Figure 5-5: Two nested procedures 20
Figure 5-6: Elided inner procedure 20
Figure 5-7: Display of outer procedure 21
Figure 5-8: Display of proc-body 22
Figure 6-1: ADA syntax tree root 25
Figure 6-2 Initial expansion of root 26
Figure 6-3- Tree after selection of procbody 27
Figure 6-4: Tree after expansion 29
Figure 6-5: Display of tree 29
Figure 6-6: Procbody subtree 30
Figure 6-7: Identifier subtree and display 31
Figure 6-8: Identifier subtree after selection 32
Figure 6-9: Proc body subtree 33

i

C

tI

Sb

.,.

IN.T...UM-

INTRODUCTION

S1. INTRODUCTION

The Air Force spends a large amount of time and money on the

development of computer software. The development of a user friendly

integrated software development environment can greatly reduce both the time

and cost of software development. This research effort attempts to integrate a

number of software tools which are presently available into a user friendly

integrated system for the UNIX operating system. This should help to reduce

the software development costs for the Air Force and the Department of

Defense.

Computers have been changing the way people work for many years. One

area which has been extremely slow to benefit from computer assistance is the

development of computer software. Only recently have environments been

developing which utilize the power of the computer in the software development

0 stage.

1.1. SYNTAX DIRECTED EDITOR

Computers, as well as other machines, have been used to eliminate the

repetitive, mistake prone steps in many production areas. Such a mistake prone

step exists in the production of computer software. The generation of

syntactically correct code seems to be a major problem in even the best of

programmers. This has led to the recent work on syntax directed, or language

oriented, editors. A syntax directed editor permits the construction of only

those programs which are syntactically correct. Program elements are selected

by the user, then required words and punctuation are automatically handled by

the editor. Only those areas which are variable need to be entered by the

programmer. This results in syntactically correct programs and leads to many

other benefits. The compiler can be simpler and faster because it no longer

need check the syntax of the program being compiled. And the programmer

1

..

:N.. -A A rl- -AJ 1%. UN -- 1 PX 03--4 -3 W N

INTRODUCTION

" ., can concentrate on logical and semantic problems without the worry of

inadvertent syntax errors. Syntax directed editors, and the environments built

-A around them, are still in the early stages of development. Work is being done

at many computer facilities to develop a good syntax directed editor. A

prototype syntax directed editor, and an environment built around it, was

developed by Captain Scott Ferguson at the Air Force Institute of Technology in

1982. A large part of this research effort is based on the groundwork laid out

by Captain Ferguson's work on a syntax directed editor, which is discussed in

the next chapter.

1.2. OTHER TOOLS IN THE ENVIRONMENT

The editor is only the central tool in a well developed programming

environment. Screen manipulation packages are tied in to the editor to tzke

advantage of the capabilities and varying abilities of different types of terminals.

Control can pass from the editor to a compiler or interpreter, then return to

the editor. Some means of listing the program in a form familiar to the

programmer must also be available. All of these functions must exist in the

environment in such a way that the movement between the tools, as well as

commands within each one, is easy to understand by anyone who would have

reason to use the system.

1.3. A LOOK FORWARD

This research effort attempts to move forward in the development of such

an integrated software development system. The main tool of the environment

is a syntax directed editor. Tools which have been previously developed on

is.. various systems have been brought together and tied into the syntax directed

editor to form the basis of the integrated system. Individual tools and

... interfaces have been modified to increase the ease of use for both experienced

Sand less experienced programmers.

2
V.%.

INTRODUCTION

; ;This paper discusses the overall design of the integrated software

development system and the development work performed in this effort.

'. Chapter 2 discusses previous work on syntax directed editors, and some basic

information needed to understand them. Chapter 3 discusses the design of the

current environment, while chapter 4 discusses the development steps in the

• a.current effort. Chapter 5 looks at the "syntax tree", the basic structure on

which the editor operates, as well as how such a tree is displayed to the user.

Chapter 6 deals with the syntax directed editor, while chapters 7 and 8 di is

the other tools in the environment. The final chapter provides conclusions -Ca

recommendations for future research efforts in this area. The appen -

-provide important reference material, particularly the user manuals contained in

appendix IV.

V".

4"

-ao

ih.

* 3

SYNTAX DIRECTED EDITORS

2. SYNTAX DIRECTED EDITORS

Work on the development of syntax directed editors, and the environments

," in which they will be used, is still in the early stages. This chapter will look at

why development work is being done in this area, and describe the previous

work on which this thesis effort is based.

2.1. WHY SYNTAX DIRECTED EDITORS?.

As mentioned in the first chapter, the area of software development has

been an area which has not profited from the use of computers. Programmers

have been writing and entering programs in much the same way since the

development of higher order languages. All the work was done by the

programmer, both in writing and entering the program. Very little work was

done to utilize the power of the computer in developing software. Software

was developed away from the computer, then submitted to the computer which

would indicate where the errors were.

As systems became more interactive, and video displays iore common, it

was natural to try to find ways in which the power of the computer could be

used to assist in the development of computer software. One area which could

benefit from this is the generation of syntactically correct code.

Writing syntactically correct code has been a problem for even the best of

programmers. Proper placement of separators or delimiters such as semicolons

or "begin" and "end" is one example of the syntactic problems encountered by

most programmers. The computer must check the program for syntactic

correctness at some point, so rather than check at compile time it could check

- during the editing session. This produces the idea of syntax directed, or

language oriented editors.

Syntax directed editors guarantee that the program entered is syntactically
'.-
-.

4

eSYNTAX DIRECTED EDITORS

S .. correct based on the syntax description of the language in which it is being

written. While not eliminating semantic or logical errors, the editor does free

the user from worrying about syntax errors. Thus the user can concentrate on

understanding the program and solving the other types of errors.

Work on syntax directed editors is taking place at many institutions

including Carnegie -Mellon University (Ref 7,10) and the Air Force Institute of

Technology (AFIT)(Ref 8). This thesis effort is based on work done at AFIT

by Captain Scott E. Ferguson (Ref 8).

2.2. SYNDE

Captain Ferguson's work resulted in a prototype editor environment based

on a syntax directed editor called SYNDE (SYNtax Directed Editor). Much of

his work was based on research by Bruce J. MacLennan of the Naval

Postgraduate School (Ref 9) and two of Mister MacLennan's former thesis

students, William R. Shockley and Daniel P. Haddow (Ref 11). SYNDE was

developed for use on a microcomputer, and was written in the programming

language C.

The central tool in the SYNDE environment is the syntax directed editor

itself. The editor builds a tree based on the language syntax description, and

manipulates this structure. All editing commands affect the tree structure and

it's elements, unlike conventional editors which affect the individual characters.

This will be discussed in more detail in a later chapter.

Other tools in the environment include a program lister, terminal

configuration program, and a syntax description processor called META. All of

these tools, including the editor, were written for use on microcomputers. This

5

SYNTAX DIRECTED EDITORS

thesis effort involved transferring these tools to a larger machine, modifying

them to run on the larger machine, and then modifying the individual tools to

expand the capabilities of the overall editor environment.

'p

!6

.I

.5..
-,

5.4
4..::

SYSTEM DESIGN

" -;3. SYSTEM DESIGN

The goal of this research effort is to further the development of an

integrated software development environment. It is being designed and tested

with the ADA programming language as the target language for the environment

to handle. However it is being developed as a general purpose package which

will require only minor adjustments to work with other programming languages.

The creation of a new syntax description would be the only modification needed

for most of the tools due to the language independence of those tools. The

language dependent tools would have to be developed for the particular language

desired, but could be easily integrated.

3.1. OVERALL ENVIRONMENT

The central thrust is to integrate the various software development tools

into a single package so that the entire software development effort can take

place from within the editor. It will provide a working environment for

software development tailored to that particular application and which is one

,* step removed from the operating system on which it is run. Once the editor is

entered code can be generated, compiled, listed, debugged, or reedited without

leaving the editor environment, because all of the tools necessary to perform

,* these actions are accessible from the editor. Other programs or system abilities

which are not needed for software development cannot be accessed from the

.. editor environment, restricting the user to those tools useful for software

development.

3.2. CURRENT DEVELOPMENT

The current effort involves the development of a working version of this

type of system on a medium size computer such as the VAX 11/780. The tools

to be used involve a syntax directed editor, source program lister, compiler, and

an interpreter. Other programs including a system configuration preprocessor

7
a

li W i ra -rX - -> A. .>....1%P - . - -. ..-. -

SYSTEM DESIGN

and language description preprocessor will be part of the environment. These

programs will in turn depend on lower level packages such as a screen display

package which will allow the use of various types of screen display devices

independent of the editor. The compiler and interpreter are being developed as

a separate research effort and will be integrated into the environment when they

become available.

3.3. LONG RANGE GOALS

Long range design goals include the ability to take advantage of multi-

tasking or background mode running of tools such as the compiler to reduce the

amount of time the user spends sitting waiting for the work to be done. Steps

are being taken to provide the necessary information for such an expansion, but

this is not an issue of the current research.

O 3.4. USER FRIENDLINESS

An issue of importance throughout this effort is the design of an

environment which is friendly to the user. An environment which is not

friendly will frequently not be used and will thus be of little importance

regardless of how efficient it may be. Issues of user friendliness are considered

at all levels of this effort. From the types of commands available, to how

those commands respond, to the movement between software tools, the ease of

use must be considered. Some decisions will be made that will result in a

system that seems less than perfect to the user, but these can only be made
after careful consideration of the tradeoffs involved. In the long run the

environment is being developed for the user. and thus should be as friendly as

possible.

'8

"A " " ""."" " " "- -"" " "" "'" - - - - , - - '-"- -"".'" "*' "'"..' "",,-"'. ." .. ' ' ' ' "",

4 . #Y. - , , . . , , . ,, ,, . , . ,. , . . , , . . '. , , ,, ,.. , '

SYSTEM DEVELOPMENT

[t "4. SYSTEM DEVELOPMENT

The development of the current syntax directed editor environment involved

a number of steps. The first step in developing the system was to assemble

working versions of all of the desired tools on the target host computer. The

decision was made to develop the environment for a VAX 11/780 running under

the UNIX operating system, due to the system's availability at AFIT (Air Force

Institute of Technology), as well as the wide spread use of this or comparable

systems throughout the Department of Defense. Next was the integration of a

display handling package into the environment to provide a more terminal

independent environment. Work was then done on the interface between the

various tools, and determining the areas of dependence between the tools.

Finally, modifications were made to individual tools to improve their

performance, and thus the performance of the entire environment.

5- 4.1. ASSEMBLING THE SOURCE CODE

When the source code for all of the tools was assembled on the VAX a

number of problems became evident. The major problem was that SYNDE. the

syntax directed editor, was not written in a standard form of the programming

language C. It was written in a dialect available on many microcomputers, but

this dialect was not portable to the VAX. Many of the problems were solved

by relatively minor changes, but these were difficult to detect. Other problems

. required the generation of the code for functions which were predefined in the

dialect used, but were not standard C functions. These two types of problems

were very time consuming even though the actual code generated was not

excessive.

Other changes were needed to make the program compatible with the

• "-* system calls of the UNIX operating system instead of the microcomputer system

on which the editor was originally developed. Thus the task of assembling

9

SYSTEM DEVELOPMENT

working versions of all of the required tools turned out to be a major project.

4.2. INTEGRATION OF DISPLAY PACKAGE

Once the code was working, the modifications could begin. The first step

was the integration of the display handling package into the syntax directed

editor. The editor had a number of display capabilities but these were all

dependent on the user entering the correct set of keystrokes for his particular

terminal when he configured the system. The user was required to know and

enter the often complex sequences to move the cursor, set highlight mode, and

other similar capabilities for the particular terminal being used. A change in

the terminal being used required the user to learn the sequences for the new

terminal and enter them using the Config program. On a large system the

number of different types of terminals available to the user can be enormous.

especially if dial-up capabilities are available. The system often has access to a

database describing these various terminals and their capabilities. The UNIX

operating system.under which this environment was developed, has access to such

a database. Thus it is unnecessary, and unadvisable, to require the user to enter

the control sequences for the various output commands. This is another example

of where the power of the machine should be used in order to simplify the use

of the environment as well as to reduce the chance of errors in the information

needed. The UNIX "CURSES" (Ref 1) display package has access to the

required database and was integrated into the syntax directed editor to provide a

more terminal independent environment. The ability to enter the codes for a

particular terminal and store them in a local file, even if the terminal type is

not in the database, is a useful feature which deserved to be retained.

10

SYSTEM DEVELOPMENT

4.3. INTERFACES BETWEEN TOOLS

The editor is the main tool of the environment being developed, and thus

a means of going from the editor to other tools, and returning, is important.

Therefore work on the interface between the tools was needed. The ability to

generate system calls from within the editor program was used to invoke the

other environment tools such as the lister and the compiler. As new tools are

added, modifications must be made both in the editor and in the new tools.

The appropriate system call must be generated by the editor when the tool is

4' requested by the user. This is done by setting the parameters for the general

system call to those required for a call to the particular tool. New tools having

more than one argument require modification to the general system call to allow

the longer argument list. Modifications must be made in the new tool to ensure

that a call is made to return control to the editor if the tool was invoked from

* {the editor, or to properly exit if called from some other place. The return to

the editor will be the usual case and is accomplished by a system call to the

editor with the appropriate arguments. If the tool was not called from the

editor it should return to the operating system. This allows the tools to be

general purpose, and they can be used outside of the editor environment if

necessary. Although use of the tools within the editor environment is the

preferred use, making them general purpose provides them with much greater

flexibility.

*4.4. TOOL INDEPENDENCE

Once all of the tools were working and tied together to form a basic

software development environment, changes would be made to the individual

tools. Therefore time was spent examining the effect that changing one tool

would have on the other tools and on the overall environment. Improvements
ia.l• ,.'. .< Jand additions to individual tools should be allowed, but these should not affect

.°J
'd

'

'L'''-,.'' .,.'= , ,-.'''- ':¢ L .. ''.., ' ...'. .';.'''...' .'"". ., '',,¢.. " ,''" , -. -" ,,'"-, " . - -"-",, -11,-, ,

SYSTEM DEVELOPMENT

-,4:. the operation of the overall software development system in any significant way.

One way to accomplish this oal is to have the various tools perform only a

specific function, and not depend on an implementation used in any of the

other tools. Only a few minor changes were needed to improve this area. The

tools were then fairly independent and as the modifications were made to the

tools to improve their individual performance, the integrity of the development

system was maintained.

4.5. INDIVIDUAL TOOLS

Once a working version of the editor environment was available on the

UNIX system, work could begin on the desired modifications to the individual

tools. Some of these were modifications to the interfaces between tools, while

others were changes to the basic tool itself such as adding new commands or

tying in new packages.0
The next chapter discusses some of the background material on the "syntax

tree", which is the basic structure on which the individual tools operate. This is

followed by chapters covering the capabilities and uses of the individual tools

which have been integrated into the software development package up to this

-" point.

,I1

12
.4

BACKGROUND

" 5. SYNTAX TREE BACKGROUND

The syntax tree is the basic structure on which all of the tools in the

environment operate. This tree is derived from the textual description of the

language provided to the tools. This chapter discusses a general form of textual

syntax descriptions, what the tree is, and how it is displayed to the user.

5.1. BNF SYNTAX DESCRIPTION

One common form of describing the syntax of a language is extended BNF

(Backus -Naur Form). Extended BNF consists of a sequence of production rules

which define the goal symbol in terms of other terminal and non-terminal

symbols. Each non-terminal symbol is defined somewhere in the sequence of

productions until all symbols have been defined. Production rules are of the

following form:

* non-terminal0n n production fornon-terminal;

The production can be either a concatenation or an alternation. A concatenation

is a series of terminals or non-terminals which appear in the order specified in

the production. An alternation is a choice where only one of the indicated

alternatives may be present. The individual alternatives are separated by a

vertical bar ("I").

Two other types of elements must be discussed. These are the option and

the repeater. Options are elements which may appear in the production either

zero or one time. They are indicated by surrounding the element or elements

in square brackets ("C" and "I"). Repeaters are elements which may appear

zero or more times. These are indicated by surrounding the elements in braces

("{" and "}"). Collectively options and repeaters are referred to as

"conditionals", those elements whose presence are not required for synttic

coretnes.

13

I . o , ,. .-. -,- -- .-. - -. . *5..- *.*....................... ~ 2 ~.
" 5' % ..-•-... . ' .' '.. - .. -.... *~ ~ % % •*~ . .-... .-. - S.-.- - -'., , -

BACKGROUND

5.2. THE SYNTAX TREE

The basic structure which the editor deals with is the syntax tree. A

syntax tree is a tree structure which represents the program being edited by the

user. The root of the tree is the language goal symbol, while t'e leaves are the

elements which correspond to the program as it stands at any particular time.

Intermediate nodes represent non-terminal elements of the language definition

which have already been expanded. Each node of the tree corresponds to

exactly one terminal or non-terminal symbol in the language syntax definition.

As productions are applied to the nodes of the tree, children are created.

As discussed in section 5.1, productions can be of two forms : concatenations

and alternations. A concatenation production is a series of terminal or non-

terminal elements which are to appear in the order specified in the production.

In a node corresponding to a concatenation production, a child of the parent

node is created for each element of the concatenation. An alternation

production consists of a set of available choices, only one of which is chosen.

For a node corresponding to an alteration node, only one child is created, and

it is created when selection of a single element is made. As will be discussed

in section 6.1.1, the terminal character strings corresponding to the reservedHwords and delimiters in the language are not stored as part of the syntax tree.

Only those elements which can be changed are part of the syntax tree.

5.3. PROGRAM TREE DISPLAY

V The enormous difference in the structure handled by a syntax directed

editor compared to a text editor presents a number of problems in displaying

'the information in a form which is useful to the user. Thoughtful solutions to

these problems can result in a number of advantages which will offset the

problems. This section contains a discussion of the problems and their solutions,

followed by discussion of the integration of a screen handling package to

14

I5'.

'.

- V.

BACKGROUND

- -improve the user interface. The reader should not be concerned with how the

example syntax trees are originally obtained. This will be discussed in detail in

the next chapter. That information is not necessary for an understanding of the

display information.

5.3.1. THE EXTENDED CURSOR

Movement within a conventional text-based screen-oriented editor is usually

accomplished by the use of commands such as up, down, left, and right. Such

movements place the cursor at a particular cell in which characters may be

added, deleted, or changed. This works well because each cell represents both a

unit of change and a unit of movement. Both are based on a one character per

unit measurement basis. Movement one unit to the right corresponds to moving

to the next character of the text, as well as moving to the next cell of the

display. The new cell contains that single character, thus the one-to-one

correspondence is maintained.

-' The syntax directed editor, however, wants to deal in program components

which are usually longer than a single character. Thus conventional screen

movements are inappropriate for the syntax directed editor and result in an

extremely complex mapping function from screen coordinates to the structure

elements if attempted. Movement to characters which are not individually

modifiable, such as the individual characters in reserved words, is also

inappropriate. Allowing such movement can be frustrating to the user because

he can get to locations but is not allowed to modify all of them.*4,
These problems indicate that the unit of movement should be the syntax

tree nodes. This is accomplished by providing commands which move the focus

from one node to another. The same commands can be used as before, but

now they refer to movement within the tree structure. Thus "up" refers to the

15% R

BACKGROUND

,v parent, "down" refers to a child, and "left" and "right" refer to the appropriate

sibling. This forces the user to have a better understanding of the language in

order to move easily through the structure. Such an in depth understanding of
the language is an excellent thing to have, but it is quite a change from current

programming practices which tend to emphasize syntactic issues. However with

the editor handling all of the syntax problems, the programmer can spend more

time understanding the language and what is being done in the program.

This movement between syntax tree elements presents a problem to the

conventional point cursor. The cursor should designate the image which

represents the entire "editing focus" which is the current program tree node of

interest to the user. This is a problem for the syntax directed editor because

5. the focus often contains more than the single character to which the cursor can

point. If the cursor points to only the leftmost character of the focus,

* ambiguities can result. An example is the production for an identifier. The

definition of an identifier is:

identifier =
'AZlaz, {o9gAZaz'}

With the focus at the identifier and a point cursor the display would appear as

4, in figure 5-1.

.

'AZlaz' ['09:AZI az'

Figure 5-1: Point cursor display

If the focus is moved down to the set 'AZ'az' the display will remain exactly

the same because the cursor is already at the leftmost character of the focus.

16
"5

%*. . * .* . . . ,- . .- . .- .. ,- . . - . - . - -% - ' -. 4, .' - ' 5% , . . " '. . . '- . - .

BACKGROUND

%'5o

A solution to this problem is an "extended cursor" which is created by

highlighting the image of the focus to clearly indicate the extent of what is

covered. This highlighting can be in the form of reverse video, color changes,

or any similar means of setting off a portion of the screen. Using an enclosing

box to signify the extended cursor, figure 5-2 shows the focus at the identifier

and then after the focus has moved to the set 'AZ:az'. Most current hardware

has some capability for highlighting, but there can be problems with some older

devices.

I AZ--azl{09AZ'

{'09jAZ1 az')

a, Figure 5-2: Extended cursor display

Movement based on the syntax tree nodes can also provide confusion to a

new user because of the way the program is displayed. The display format

depends on the format control commands placed in the syntax description (even

though these have no effect on the syntax tree itself), while the commands are

based on movement within the syntax tree. Thus movement to a right sibling

does not necessarily translate to a movement to the right on the screen. Figure

5-3 shows a procedure with the focus at the "decl" node. Invocation of the

"right" command moves the focus to the right sibling, in this case the

"programjcomponent" node. This results in a cursor movement down to the

next line as shown in figure 5-4.

17
.,.

5' - 5.

BACKGROUND

-- _ r

procedure <identifier>[formralpart] is

.'- {<decl>}

.'.{<program component>}
begin

<seqof stmts>
end (<identi-fier>];
(<compilation unit>}

Figure 5-3: Focus at "dccl" node

procedure <identifier>tfornal part) is

(<dec1>}

" I (<program component>)

* begin
<seq of struts>

end [<ide6tifier>];
(<compilation unit>)

Figure 5-4: Display after "right" command,

focus at "programcomponent"

53.2. DISPLAY SELECTION

*The physical size of a terminal display screen severely restricts the portion

of a large program tree that can be displayed on the screen at any particular

time Determining the portion of the tree to display has been done in different

ways by different implementors of syntax directed editors. One simple approach

that has been used is to have the user specify exactly which subtree is to be

displayed. (Ref 9) The tree is then clipped to fit the viewing screen.

18

BACKGROUND
4.

. Suppression of the display of nodes beyond a certain depth from the subtree

root is performed to make additional room on the screen. However this

requires an undue amount of work on the part of the user in specifying the

subtree and viewing depth. SYNDE uses a modified version of this method

using automatic display justification and modular elision. Both of these concepts

are discussed in the following paragraphs.

Automatic display justification removes the necessity of the user specifying

the subtree to be displayed. The assumption is made that the user is interested

in the area surrounding the focus, including the parent and the children. The

subtree chosen for display is the one which contains the focus but whose size

does not exceed the size of the display screen. This provides the most

information for the display with no effort on the part of the user. If the focus

itself is too large for the display, it is clipped to show as much as possible.

Modular elision is a modification so the suppression of nodes below a

certain depth does not have to be specified by the user. The display of any

subtree may be suppressed by command of the user. The image of the "elided"

,.. or suppressed subtree is replaced by an arbitrary string to mark the presence of

elided material. When inside the elided subtree the editor will consider no view

for the screen larger than the elided subtree. When outside the elided subtree,

it appears as a mark signifying the presence of material of which the details are

unimportant to the higher level.

The elision concept may be thought of as specifying modular levels of

information. An elided subtree is displayed only as a unit. Only when one is

inside that unit are specific details of any importance. An example is a simple

program consisting of two nested procedures. With the focus at the inner

procedure the display would look like figure 5-5. Eliding the inner procedure

19

BACKGROUND

procedure outer is

procedure inner is
begin

<seq of stmts>

end inner,

begin
.<seq_o f_st.nts>

end outer,

*1

Figure 5-5: Two nested procedures

" I procedure inner is
"begin

end inner;

Figure 5-6: Elided inner procedure

will cause the display to change to that of figure 5-6. Movement further down

the tree will allow no tree to be displayed which goes upward past that shown.

Moving the focus up to the outer procedure causes the display of the elided

material to be suppressed. This gives figure 5-7. The user remains aware of

the elided information, but is unconcerned about its content. This is quite

similar to the ideas used in modular programming.

20

%'

o * *. •.. . .

BACKGROUND

procedure 13~e is

begin
<seq_of_stMts>

end outer;

Figure 5-7: Display of outer procedure

with suppressed inner procedure

5.3.3. DISPLAY IMPLEMENTATION

Once the subtree to be displayed has been selected SYNDE begins the

process of generating the image based on the syntax tree and the format

controls contained in the syntax description. The desired image is generated and

stored in an internal data structure representing the current display screen.

Changes are made to this structure as the screen is modified. If a new line or

character is the same as the old one no change is made to the screen. The

* actual display routine is discussed below.

The format control characters control the display of the program on the

4screen. A "'" generates a space, a "@" means to start a new line, and a "+"

causes a new line to be generated with an additional level of indentation. To

see the results of the various format controls on the generated image one can

* look at the definition of a procbody

21

EBACKGROUND

proc body -
procspec "is"

"+ dec1}
1+ rep-spec . }
(+ program_component)

S begin"
+ seqofstmts

[@exceptions !]

Vend" [identifier] ";" ;

This would result in the display shown in figure 5-8.

(proc spec> is
T<decl>)
(<program.componen t>

begin

<seqof struts>
end (<identifier>];

Figure 5-8: Display of proc,_body

The screen display of the image requires a number of terminal dependent"

actions such as cursor movement or highlight mode entering or exiting. These

are implemented by tying into a screen handling package known as

"CURSES"(Ref). This package handles the output of the terminal dependent

codes for each action. Thus, from the editor's viewpoint, only one type of

logical device is dealt with. This frees the user from the worries of proper

configuration for the terminal output. All the user has to do is specify the

type of terminal he is on to the system sometime before entering the editor,

and the device dependent display issues are handled by the power of the

computer system.
ft

22

i °m..............................

BACKGROUND

• .'With this background on the syntax tree and how it is displayed, one can

look at the individual tools which make up the environment, beginning with the

syntax directed editor.

-S2

*,1

'(S

1'S

, 5 V

...-

23

SYNDE

S: 6. SYNDE
X,

The main tool in the environment being developed is the syntax directed

editor, known as SYNDE (SYNtax Directed Editor). By itself it is the most

complicated of the current set of tools. In addition SYNDE is the master

interface module. It is from the editor that files are created, modified, and

listed, and it is the area from which all of the other tools are invoked.

SYNDE also has the largest interface to the user and this presents problems of

it's own. The issue of user friendliness is of major importance for both the

input and the output sections of the editor. This chapter will look at how a

program tree is developed for the editor, and the changes which have been

made to the editor.

6.1. PROGRAM TREE SYNTHESIS

(6.1.1. CREATING THE TREE

The syntax tree described in section 5.2 is derived from the language

definition. The language syntax definition consists of a set of production rules

beginning with the language goal symbol. The definition of this goal symbol

describes exactly what is acceptable in the language in terms of other non-

terminal and terminal nodes. Thus the goal symbol should be the root of the

syntax tree. For the ADA programming language the goal symbol is

"compilation" which gives the syntax tree shown in figure 6-1. The syntax

description for compilation is:

compilation =

compilation unit

The description (in the form needed by the META preprocessor) consists of the

name of the element being defined, followed by an equal sign ("="), then the

definition of the element, and is terminated by a semicolon (";"). The "@" is

24

V~ V V* .p .. . ~j'~' . . .~ .* X.X . . .

SYNDE

Ise

comin11at ion!

Figure 6-1: ADA syntax tree root

the format control character for a new line discussed in section 5.3.3.

This production is an example of a concatenation production. A new child

is created below the node for each of the elements of the definition. It also

illustrates the use of a "repeater". The braces ("I" and "}") which surround the

sec nd line indicate that the enclosed element may be repeated zero or more

times. To become part of the program it must be "established" or selected for

"I inclusion. Unless deleted, it will appear as part of the syntax tree but will not

be visible in the output of tools such as the lister.

Once this production is applied to the compilation node, figure 6-1 is

transformed into figure 6-2.

Once that production has occurred the children are in turn examined,

beginning with the first compilation unit. The syntax definition for a

compilation_unit is:

25

'.

SYNDE

Lompia tion]

ceompilation u.it (compilation _unit)

* Figure 6-2: Initial expansion of root

compilation-unit = (
proc body
func body
pack body
proc decl
func decl
pack decl
with use clause
subunit
pragma >;

The angle brackets "<" and ">") surrounding the list indicate that this is

another type of production, an alternation. Each of the alternatives must be a

single element, and only one of those elements will be selected as part of the

program. The above example illustrates an alternation with nine alternatives.

. The user selects which of the alternatives he wants synthesized into the tree and

that alternative becomes the child of the current node. When the editor help

.. function is turned on. a list of the alternatives available appears at the bottom

of the screen to assist the user in making the selection. Selection is currently

done by typing enough of the alternative to uniquely identify it (with command

completion to assist), however more efficient means such as a light pen or

cursor would be a useful extension for systems having such a capability.

-'-" Suppose the user selected a procbody as the alternative desired. A child

426

SYNDE

* for the compilation unit node would be generated resulting in the transformation

of figure 6-2 to that of figure 6-3.

c~ompilati~on]

[compilation-uni9t (compilation unitIl

[pCbo y

4. Figure 6-3: Tree after selection of procbody

The synthesis would continue, this time with the proc body. The definition
of a procbody is:

* piroc body =

•procspec -is"

4+ decl}
.+ rep-spec , }
{+ program-component)

Q"begin"
+ seq of-stmts

[@Mexceptions !]
@"end" [^identifier] " ;

This definition provides the layout of a procedure body. It is a concatenation

and introduces a number of new concepts. As before the symbols "@". "+".

and "^" are the format control discussed in section 5.3.3 and do not concern the

form of the tree itself. The elements enclosed in square brackets ("[" and "]")

are optional elements. These are similar to the repeaters discussed earlier, but

an option may appear only zero or one time. Options may be synthesized into

the tree or removed exactly like repeaters.

-> *" Together the options and repeaters are referred to as "conditional"

27*,°9I

", ,,'* *."*...-; -. , ,. , - , ,-.-' ;, ."...-...."..-............ ..".- -....- ..- '.

SYNDE

elements, those whose presence is not required in a valid program. Many, such

as the declaration ("decl" in the above syntax definition for a procbody), are

often present and should be immediately available for the user to see. Others,

such as the exceptions ("exceptions" in the above syntax definition), are rarely

used and would be in the way for the average user. It may be desirable to

require user action to insert these elements rather than to remove them. This is

indicated by the hide indicator ("!"). The hide indicator may be place at the

end of any conditional node to indicate that that element will not automatically

be synthesized into the tree. User action is required to make it a visible part

of the syntax tree.

The final new item introduced here is the character string enclosed in

quotation marks. These strings are the actual terminal symbols which appear in

the language. They represent the reserved words or delimiters which are used in

O the language. They stand for themselves and cannot be further expanded.

While necessary for display and listing purposes, such strings appear to provide

no useful information to the syntax tree. What a particular string is, and where

it belongs in the text output, is easily determined from the language syntax

description. These strings are used to determine the extent of various constructs

when processing a textual input file. They are not used by the compiler, but

are discarded once their purpose as boundary markers has been accomplished.

The syntax directed editor has already performed much of the analysis work.

and the structure of the tree determines the constructs stored in the tree. Thus

the strings add no new information, while occupying storage space. Research

has shown that these strings need not occupy space in the tree itself. (Ref 11)

Thus to reduce storage requirements these strings are not synthesized into the

tree. However they do appear on the user display.

When the above definition of procbody is applied to the procbody node,

28

l .Y .- ---.. J ** *

SYNDE

figure 6-3 is transformed into figure 6-4 NoLte that the hidden elements.

- rep_ spec and exceptions. as well as the character strings do not appear in the

syntax tree. The display of this tree is shown in f igure 6-5.

COmpilation unit7 {comoilation unit}

proc spec I Prog ram compon ent ~ Fidentifier)i

s3eqof stm t s-

Figure 6-4-. Tiee after expansion

of procbody node

<proc spec> is
Tdecl>}
(<program component>)

begi±n
<seq_of-3tints>

end [<identifier>];
(<compilation unit>)

Figure 6-5.: Display of tree

4 shown in figure 6-4

AP, It should be noted that up to this point only one user action has taken

place, the selection of a procedure body. The expansion of the syntax tree,

29

%."1

~SYNDE

including the placement of required words and delimiters, has taken place

automatically. Information indicating the type of nodes which may be

synthesized appear for the optional and repeater nodes. This process should

continue for those modes on the "frontier" (the edge of the tree) which are

required to be present. The only required nodes not yet examined are

procqspec and seqof_stmts. The definition of a procspec is

procspec =
"procedure" ^ identifier [formal_part];

Once again this is a concatenation and thus may be expanded. Any time that

an unconditional node is established whose definition is a concatenation the

system should automatically apply the production to get the expanded version.

When this is done for proc._spec the subtree of figure 6-6 results.

rprocboy

[Proospe_ .,,gra ,,ooe~ kidentfie

}deal) seq of stnts

identifier [_forma1.part]

Figure 6-6: Proc body subtree

after automatic procspec expansion

This automatic expansion of unconditional concatenations occurs whenever

such a node exists. A look at the definition for an identifier

.0
°30

I o , W

SYNDE

identifier =
'AZaz' {'09:AZ:az') ;

shows that it is also an unconditional concatenation. Thus it is automatically

expanded. This continues until no such nodes remain.

The identifier definition shows one of the final types of productions, the

set. Sets are compact ways of indicating an alternation which consists of a

single character. Elements of a set may be single characters or pairs of

characters which specify an inclusive range in the ASCII character set. Thus the

set 'AZ az' is syntactically equivalent to the alternation:

letter <
"A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K"
"L" "N" "N" "On "Pee "O "R" "S" "T "U" "V"
"W" " Ye "Z" "a" "" "C" "d "e "fee "ge
"h" "i" "J" "k" "i" "m" "n" "on "pe "q" r"

'... "S" "t" "U" 1V" "W" "X" "y" "ZOO >

The set notation is more efficient for storage as well as it's obvious ease of use.

Application of the definition to the identifier node yields the subtree

*shown in figure 6-7. This figure also shows how it would be displayed.

..,'-' L dentifie..

A'AZ az' £'09;AZ: 1az'}

Figure 6-7: Identifier subtree and display

Selection of a set element is done by typing the character desired. The

g character selected then replaces the name of the set both in the tree and in the

display. For example selection of the letter X for the 'AZ az' set would

31
.. o.

,,".5'. .,,[,. ';.-; ., .. . -. ,-; .,-.-. ,. -. .. . , : .. .- / / ..- ; .

SYNDE

-J,

identifier

X('09AZ. -az'}
1{'091AZaz'}

Figure 6-8: Identifier subtree after selection

of first character

transform figure 6-7 into figure 6-8.

6.1.2. MODIFYING THE TREE

The preceding section showed how a tree is originally created and expanded

for sets, alternations, and concatenations. At this point what is present are

mostly unestablished conditional nodes. These nodes require some user action

for them to become part of the tree. For nodes which are defined as a string

or concatenation, typing the first character of the displayed name will establish

the node. For sets or alternations the selection of one of the alternatives

establishes the node. When the node is established it appears without it's

surrounding brackets or braces. If it is a repeater, another unestablished

repeater is inserted immediately to its right. All appropriate expansions of the

newly established node are done exactly as discussed above.

The other major means of modifying the tree is through the insertion or

deletion of nodes. Both operations take place at the "editing focus". The focus

is the current program tree node of interest to the user. The entire subtree

below that node is affected by the operations performed.

32
b-2 .

'-SJ5-. *j*

SYNDE

The function performed by the delete operation depends on the type of

node the focus is at. If the node is an option or a repeater the node

represents an element which is not needed and the node may simply be deleted.

Otherwise the node is required by the parent and may not be removed.

However the delete operation for such a required node will clear the node and

remove any subtrees which have grown from it, allowing the node to be rebuilt.

The only way to eliminate such a node is to delete it's parent.

An example of the use of the delete operation can be seen with the

procedure body declaration, previously shown in figure 6-6. If the procedure

was to have no formal parameters the focus would be moved to the

"formal_part" node, and the delete operation invoked. This would result in the

" subtree of figure 6-9.

'4" lproc..bodyl

proc spec (program componrent} [iden ifier]

(dec11] 3e q of str~

jidentifi-erj

Figure 6-9: Procbody subtree

after deletion of formalpart

The insert operation may be used to add an option or repeater to the tree.

This may be one previously deleted or it may be one which was originally

hidden. In either case the focus is moved to a node immediately to the left or

33

am

-7--p-3- -- -7 7 -7 7 71 7 - 7

SYNDE

, ' right of where the element is to be inserted. In order to restore the

formal_part of the procedure above, the focus would be moved to the identifier

node and an "insert right" command issued. Of course there must be something

available to insert at that point or an error message will occur. What is

available for insertion depends on the syntax definition of the parent of the

focus.

"Cutting and pasting" operations are also available by clipping and copying

subtrees. More details on those commands are available in the user manual.

6.2. TOOL DEVELOPMENT

The code for SYNDE involved the most changes of any of the tools. The

first step was to revise the code to get a working version of the tool on the

VAX which was written in standard C. This was a very long step due to the

(large amount of code written for this tool. A large number of dialect

dependent forms and functions were used, requiring extensive rework to obtain a

-w working version.

The code for the display portion of the editor was then modified to take

advantage of a display handling package called "curses". "Curses" uses the

system terminal description database to provide the proper sequences for items

such as entering and exiting reverse video mode. Integration of this package

allows a more terminal independent editor environment and frees the user from

the worry of entering the proper output command sequences when configuring

the environment.

The remaining changes involved the addition of new editor commands.

Each new command was added to the case statement controlling command

selection, and code for the command was generated. The new commands

include the commands to redraw the screen, save current changes to the

34

SYNDE

program, write the program to another file, and call the editor with a new file

to be edited. Details of what each command does can be found in the user

manual for the syntax directed editor in Appendix IV.

There are a number of other tools, which, together with the editor

discussed in this chapter, form the editor environment. The next chapters look

at the other tools in the environment.

-43

-:

P/.

h'.

~35
5 . -. _-, -,-q".. -, . - . .. - - . --. ". -".- '

META

7. META

"META" is one of the preprocessing tools in the software development

environment being developed. It is used to convert a human readable version of

a language definition into one which is useful to the other tools such as the

editor and lister. A discussion of the syntax description is followed by a

discussion of the subset capabilities of META and then a short discussion of the

transformation performed by META.

7.1. TOOL DEVELOPMENT

Most of the work for the META preprocessor was done by Captain

Ferguson. Code for the tool was transferred to the VAX, and modifications

were made to get it running for the larger machine and different dialect.

-, Otherwise the code remained almost intact from the original version.

O 7.2. META SYNTAX DESCRIPTION

META accepts a form of extended BNF with a few minor changes. (See

section 5.1 for a discussion of extended BNF.) The expressions accepted by

META must be of a simpler form than those normally found in BNF. For

example an option or repeater may only contain one element. Thus

S.. { , identifier }

in BNF must be expanded to

S.. { identifiers I
identifiers

- "," identifier;

in a META description. Details of these types of restrictions may be found by

looking at the description for META found in Appendix I.

IThe other major difference between META and extended BNF is that

META accepts symbols that control the spacing and line display of the elements

of the grammar. This is necessary so that the editing and listing programs

36

4$

*META

know how to display the information to the user. These format controls consist

of a space mark (""), a newline "@"), and an indentation marker ("+")

Detailed descriptions of what each control does are contained in the META user

manual and section 5.3.3, They are all commands that describe how the

information is displayed to the user. The inclusion of this type of control in

the syntax description results in the use of a standardized format for all

programs in the language independent of the user, and relieves the user from

the worry of how to format a particular program. While ADA does not require

the placement of information in any particular place on a line for syntactic

correctness, it is still useful to enforce a standardized format if the computer is

handling the formatting. This results in greatly increased readability of code

- between different programmers or programming teams.
' '

7.3. LANGUAGE SUBSETS

META allows the definition of various subsets of the language. These

subsets indicate what elements are to be left out of the language syntax

description for that particular subset. Thus the subsets indicated are "excluded"

subsets. All elements marked as belonging to subset 0, for example, would be

excluded from the syntax description for language subset 0. Alternatives and

conditionals may be specified to be non-existent for various subsets.

Language subseting is a feature which is of special help in learning

situations. A language such as ADA is enormous, and can be overwhelming to a

'programmer attempting to learn the language. With the use of subsets, smaller,

more manageable portions of the language set may be used without the details

of the other constructs being known. Any program written for this subset

would appear exactly as it would in any other subset or in the entire language

. .:. and would be a valid program in the original language. However the user

- would be freed from knowing everything about the language right from the

37

META

"- :beginning. As his knowledge increased larger subsets could be used to introduce

new concepts and constructs. The selection of which constructs should be

excluded in each subset should be specified by the system manager when the

environment is first received and then should be left alone. Individual users

may then access the syntax description and available subsets, but should be

unable to change it.
4

META allows up to eight subsets ("0" through "7"). These are specified in

the language definition by placing a "S" followed by a series of digits after the

conditional or alternative to be left out for that set. When a subset is specified

to META, those entries marked with that subset number are not "Icluded. Any

grammar rules which are not accessible because of the subset indication are not

included in the language definition.

4 7.4. META CONVERSIONS

The information in human readable form is not the most efficient way for

the other tools to access the required information, so META converts it to

another form. It first processes the syntax description to insure that there are

no syntax errors in the description. Any undefined items, multiple definitions

of items, illegal formats, or other errors are flagged and the program terminates.

Ways of increasing the efficiency and readability of the syntax definition

by combining production rules are noted but are not carried out. This includes

4.' noting the location of single alternatives and single conditional elements. These

types of elements may be combined into other elements in the description to

produce a more compact, and more readable, form of the syntax description. It

will also reduce the number of decisions required by the user when entering a

program. Although the syntax directed editor attempts to perform these

• -optimizations while it is running, if the syntax description is to be used often it

38

-J, 7'. . 7- -.-- 7.-

META

S *should be rewritten to take advantage of the optimizations suggested by META.

• ,,A version of the description in a form that is usable by the other tools is

built using "syntax nodes". These nodes contain a flag detailing the type of

information contained in the node plus a pointer to the next element or a string

that represents that element. These are more easily accessible to the other tools,

and the conversion done here eliminates the need for repeating these lengthy

conversions later by storing the description in the form needed by the other

tools. The final output of META is the converted syntax description stored in

-J a file (name.sdf) and an output summary detailing what information was

processed. Only the ".sdf" file is used by the other tools.

t39

.5,

I

-pm

,"

, 39

. . . .

. . . .*,: - < . ***%* ~
%

.- ,- ,"., , " .. .,' " " ''% .- . . ." . ..o..' ., -"-. .,,"."% -.. , , . .-" - .. .- -,,.,'--., . ,... .,'-' , , ., , .,',.,, ..'',',.', ,,..-

OTHER TOOLS

• .8. OTHER TOOLS

In addition to the editor (SYNDE) and META, two other tools are part of

the current syntax directed editor environment. These are Config and Lister.

and will be discussed in this chapter.

8.1. CONFIG

The Config program (short for configuration) is another one of the

preprocessing tools in the environment being developed. The purpose of this

tool is to allow configuration of the editor to correspond to a particular user

and a particular terminal. The user is able to enter the sequences of keystrokes

which are used to invoke each of the commands in the editor. (See the user

manual for SYNDE in appendix IV for details of the available editor

commands.) These sequences can be any sequence of up to seven keystrokes

beginning with a non-printable character. Each user can have a personalized set

of command calls, even though the set of commands remains constant. Thus

each individual can fine tune the input commands to ones with which he or she

feels comfortable. This is an effort to increase the user friendliness of the

overall environment and it does not reduce the abilities of the particular tools.

Responses are stored in a file titled "terminal.tdf" which is used by the editor

to obtain the needed input and output command strings.

8.1.1. TOOL DEVELOPMENT

The code for a version of Config which was designed for use on a

microcomputer was transferred to the VAX. Work was done to get that version

working for the larger system, and then modifications were made. The second

version of the program allowed the user to have Config obtain the proper

output command sequences from the host system's terminal description database

%, and enter them in the "terminal.tdf" file. Modifications to other tools have

*added packages which automatically retrieve this information from the system
.40

°. 40

OTHER TOOLS

" database, and thus the ability to copy this information from the system database

into the "terminal.tdf" file became obsolete. Further versions of the tool were

necessary as new commands were added to the editor. Each new command

K! involved a simple change to Config to allow the entering of the new input

command sequence.

8.1.2. GENERAL INFORMATION

There are two major categories of information covered by Config input

commands, and display or output control command sequences. These will be

discussed in some detail after discussion of information which pertains to the

entire Config program.

Config travels through a series of loops which allow the user to selectively

change the input commands or output sequences as often as necessary. After a

prompt the user is required to enter a response. A "Y' or "y" is treated as a

"yes" response, while a carriage return or any other key is treated as a "no". If

possible, a negative response leaves the information unchanged. As the

commands are entered they are echoed to the terminal so that the user can see

what has been entered. More details on the form of the command echoing is

available in the user manual.

8.1.3. INPUT COMMAND SEQUENCES

The configuration of the input commands allows the users to specify

command sequences with which they are comfortable. Each user of the editor

can have a personalized set of command sequences. All commands should start

with a non-printable character because these are not used in the source code

which will be entered through the editor. Each command must be entered and

must be unique.

41

OTHER TOOLS

, K-.' 8.1.4. OUTPUT COMMAND SEQUENCES

The output command section is of less importance than the input

commands but can not be ignored. This is due to expansions which have

occurred in the environment since it was originally designed. The majority of

the sequences entered in the output section are no longer used by the

environment unless the terminal is of an unknown or uncommon type whose

capabilities are not known to the operating system. If the terminal type is

unknown, the editor environment will use the sequences entered through Config.

If the type is known, the environment will automatically use the information

contained in the system's terminal capability database. Thus the majority of the

information in the output section is of no concern to the average user.

-. Two major types of information are entered in the output section. Three

of the screen display items, the window divider, the number of spaces used for

a tab, and an elision marker, have no predefined values and therefore must be

entered by the user. The rest of the commands are the terminal dependent

features. These need not be entered by the user and are only used if the

operating system does not have the required information. These command

sequences are appropriately marked in the prompts to the user in the Config

program.

More details on what commands are entered and how they are displayed

can be found in the user manuals for the editor (SYNDE) and for the Config

.1 program.

8.2 LISTER

.A tool to generate a text listing of a program is needed because of the

form that a program is stored in by the editor. The syntax tree description is
%J

%,

•q -.- " what is stored, unlike current practices which store the text file. Thus the

42

• -4 ".-. . - , . "% " . , . . • % - . . . " , -

OTHER TOOLS

..2,. program is stored in a state halfway between conventional source programs and

conventional compiled versions of those programs. Conversion from this

intermediate form is needed both for human readability and to allow the

program to be submitted to other more conventional tools.

"Lister", the source program listing tool, may be called from the editor or

may be called on it's own. Input for Lister is a syntax tree such as the one

generated by the editor. The output is a human readable text listing of the

program similar to the type of source code generated by most programmers

before the development of syntax directed editors. The format of the generated

listing is controlled by the format control characters imbedded in the syntax

description.

The code for Lister required few changes from the original version. As

0 with all of the tools, when the code was transferred to the VAX changes needed

* to be made to make the code compatible with the standard dialect and new
*

system. These were the only changes needed for Lister.

As mentioned, Lister may be called in one of two manners. When called
by itself it generates the requested listing based on the argument list, then

returns to the operating system. When called from the editor it generates a

listing of the file currently being edited, then returns to the editor. The job

performed is the same in either case, only the return location is different.

The listing generated contains only those elements which have been

synthesized into the program, or those which are required to be present.

Optional or repeated elements which have not been selected will not appear in

the listing, even though they may be visible in the editor. Required elements

which have not been expanded will appear as the character string name of the

item to be entered surrounded by angle brackets ("<" and ">"). This will cause

43

I
4

-'"-'-.............-'.....................""..... ,,- ,,-....-- ". . .:.., ,, ,-, .,., ,,.; ..,, ., .,.',., ', ..,...-.../ ,. , , ,',, ", 'Q' ", , \-.", Q

OTHER TOOLS

an error if an attempt is made to compile the program, but an error would

occur at that point in any case. This way the user can see what type of

element needs to be inserted at that point. Once again the user friendliness

issues have been considered.

That concludes the discussion of the individual tools which are part of the

current syntax directed editor environment. The final chapter presents some

conclusions and recommendation about the environment which contains these

tools.

4'44

a.

'.°

.J

.4.
a'

pJ

4' - °.• . i - " ° m - " , - -" " " o - - ' " " . . 0

',;'4 V ,'-'4',; ',,,--, . ,,,-'--,-.,...-...:,-..,.. .'.-.. .'. - . .". ',-.-. " ;. ".....

CONCLUSIONS AND RECOMMENDATIONS

- .; 9. CONCLUSIONS AND RECOMMENDATIONS

N9.1. CONCLUSIONS

A syntax directed editor appears to be a very powerful tool for the

software development environment of the future. This type of editor frees the

user of the worries of syntactic errors and allows the user to concentrate on

other areas such as a better understanding of the language and more efficient

design of programs. The power of the computer will begin to be used in an

area which it has long been ignored : the development of computer software.

Although a knowledge of the language syntax will still be important, the mistake

Sprone step of guaranteeing correct syntax will be shifted from the user to the

computer.

The environment developed in this research effort is not an ultimate

environment. It is merely another step in that direction. Additions and

modifications have been made so that this environment is both more powerful

and of wider use than its predecessor.

This environment, as was its predecessor, was developed for use with the

ADA programming language. However it is not restricted to any particular

language. The editor, lister, configuration preprocessor, and language

preprocessor, are all language independent and require only a new lang,

syntax description to be used with other languages. The interpreter and

compiler are language dependent and would require a fair amount of work to

develop them for other languages. However syntactically correct programs can

be obtained from the editor and lister to send to conventional tools.

Finally the use of such a software development environment is especially

useful in an academic or other learning environment. Use of subsets of the

language allows the introduction of the language in smaller, more controlled

45

CONCLUSIONS AND RECOMMENDATIONS

units. A syntax directed editor allows concentration on language structure and

program design while removing the "bookkeeping chores" that deal with correct

syntax. Such tools should be of great assistance to the upcoming generation of

computer programmers.

9.2. RECOMMENDATIONS

The recommendations for continued work in this area fall into five major

categories. These are conversion to ADA, incremental compilation, multi-tasking,

program documentation, and user interface improvements.

9.2.1. CONVERSION OF CODE TO ADA

The current direction in the Department of Defense is for future software

to be developed in the ADA language. Many of the features of ADA, such as

tasking, will allow further developments in the current environment package to

0 be done more easily. In addition it will provide a portable package which will

be of use throughout the Department of Defense. All of the code for the

syntax directed editor environment is currently written in the programming
p language C. This code would need to be converted to ADA before these benefits

could be realized. Although conversion of such a large amount of C code will

be a major effort, it will result in a product which should provide benefits in

many applications over a long period of time.

9.2.2. INCREMENTAL COMPILATION

Changes in a piece of code in a file requires that the entire file be

recompiled even though only a small portion of the code was affected. This

happens because the compiler does not know where the changes were made and

how much of the syntax tree they affect. Some modifications have been made

to the current environment to begin the work needed for incremental

compilation. These involve modifications of the nodes of the syntax tree to

46

.

CONCLUSIONS AND RECOMMENDATIONS

note whether code has been generated for the subtree, or if source code changes

have occurred in the subtrees for which code had previously been generated. If

changes have been made. the code for that subtree must be regenerated. This is

only a simple first step towards the use of incremental compilation.

Investigation into the requirements of such compilation needs to be done and

integrated into the current environment. Successful results at other institutes

such as Carnegie -Mellon University (Ref 7,10) would provide a useful starting

point for such efforts.

9.2.3. MULTI-TASKING

.In almost all systems the computer spends a lot of the time idle and

waiting for someone to do something. In addition, much of the work done by

such tools as the compiler can be accomplished without the user sitting there

staring at the screen. An ability to initiate something like an incremental

" compilation in parallel would reduce the amount of time the user wastes waiting

for the computer to finish its tasks. Such work could be performed during the

unused cycles while the user is editing other sections of the code. Thus the

code generation for most of the other procedures or routines could be

completed by the time the user finishes typing in the last procedure. This

would substantially reduce the time required after the user completes the editing

process to produce the code. Other areas which would benefit from a parallel

task can certainly be found. This ability should be integrated into the

environment both for efficiency and especially for increased user friendliness.

9.2.4. PROGRAM DOCUMENTATION

Proper and complete documentation of the code written by a programmer

is an important part of the development of useful computer software. Although

comments within the code are not part of the syntax description of the language

and thus are ignored by the compiler, they provide important documentation for

47

- , . .- . . , . -- , _ 2

CONCLUSIONS AND RECOMMENDATIONS

the code. The current editor environment has not addressed the issue of

commenting, and has no means of inserting comments in the source code

generated by the editor. A means of adding, or possibly requiring, program

code documentation needs to be developed for the editor environment.

A possible solution to this problem would be the addition of a comment

field to each node within the syntax tree. This field could contain a character

string corresponding to a comment, and could be suppressed during most of the

editing session or suppressed until a text file of the program is listed. There

are a number of problems with this approach, including the limiting of the

comment placement. It is mentioned here only as a possible starting place for

much needed future research.

9.2.5. USER INTERFACE IMPROVEMENTS

T, The software development environment which has been developed was

designed with a user friendly interface in mind. The user interface obtained

was sufficiently friendly for the designers of the environment. However. neither

this software development environment nor its prototype have had the

opportunity to be widely utilized. Additional commands have been added to

J. improve user capabilities but this was based only on the designer's incomplete

knowledge of the users. The environment should be tested with a wide range

of users and their comments and criticisms obtained. Addition of new

commands, deletion of unused commands, or modifications to the current set

should be done to improve the friendliness of the environment and make it

more responsive to the users. Although no system can satisfy all users, a

friendly, useful environment will be a boost to productivity.

4 ,

Computers have changed the way the world operates over the last few

48

-JJJ- ",. .' ., ~ .~V - * .~;C

~CONCLUSIONS AND RECOMMENDATIONS

,... . .. ',years. Finally the power of the computer is beginning to return and provide

.. '

.p.

i.

'4-

.4-

V . , ' ? ' , . t = . " . " , " I e = _ " " " " * " " % . -" ' " " " , " " " , . " . " ' " . . " ' , , " " , "

~BIBLIOGRAPHY

1. Arnold, Kenneth C. Screen Updating and Cursor Movement
-"Optimization: A Library Package. Computer Science Division,
• "- ' University of California, Berkeley.

i... 2. Barnes, J.G.P Programming in ADA. Addison-Wesley 1982.

• .3. Department of Defense. Military Standard ADA programming
"'"'Language. Washington, D.C. January 1983, (ANSI /MIL-STD-1815A).

-. 4. Department of Defense. Reference Manual for the ADA
-" Programming Language. Washington, D.C. July 1980, (AD-A090709)

~5. Department of Defense. Requirement for ADA Programming Suport

| .:Environments - Stoneman. Washington, D.C. 1980.

• .,6. Feiler, Peter H. and Raul Medina-Mora. Ant Incremental
"'" Programming Environment. Carnegie -Mellon University, Pittsburgh,

PA. Department of Computer Science, April 1980.

7. Feller, Peter H. A Language-Oriented Interactive Programming
Environment Based on Compilation Technology. PhD Thesis Carnegie -
Mellon University. 1982

8. Ferguson, Scott E. A Syntax-Directed Programming Environment for

the ADA Programmriing Language. Master's Thesis Air Force Institute
of Technology. December 1982. (AD-A053032).

9. MacLennan, Bruce J. The Automatic Generation of Syntax-Directed
Editors. Naval Postgraduate School, Monterey, CA., 1981.

10. Medina-Mora, Raul and David S. Notkin. ALOE Users' and
Implementors' Guide. Technical Report CMU-CS-81-145, Carnegie -
Mellon University Department of Computer Science. November 1981.

11. Shockley, William R. and Daniel P. Haddow. A Conceptual
Framework for Grammar Driven Synthesis. Master's Thesis, Naval
Postgraduate School, Monterey, CA., 1981.

5

€'.

'p .

-5O

.
.'e '','"",:- "' " ''", - .""''-,,.'''',-.-.''".'--.BIBLIO G R APH Y " " "", "-,"-"-",''-"' -,:.: " "-"' -

META SYNTAX DESCRIPTION LANGUAGE

APPENDIX I

META SYNTAX DESCRIPTION LANGUAGE

This appendix contains a definition of the META syntax description

language. The dcscription is given in META.

syntax =
* rule

{ rule }

rule =
identifier "="

+ definition ";"

identifier
'AZ~az' I091AZ:_laz' I

definition = (
* alternation

concatenation > ;
4

alternation =
"<" "element { element } a >

,J. concatenation =
term { term } ;

element =
primary [a "] a index] ;

term = (
option
repeater
primary > ;

i.o

primary =
['+I'' a] factor [a ']

'lex=
."$" { '07' 1 ;

option =
N(" element "];

! "':'." repeater=
" "{" element "}" ;

51

,~W . -.- , q ~ -,, *.- -A -.-. . i-. - 4. -. . .- V-.

META SYNTAX DESCRIPTION LANGUAGE

factor =
identif ier
string
set>

string =

set=
pair {pairs "'

pai

pairs=

pairsir

":" pair2

.

%

META DESCRIPTION FOR ADA

APPENDIX II

META DESCRIPTION FOR ADA
This appendix contains the META description for the ADA programming

language. It is adapted from the 1980 ADA reference manual.

compilation =
compilationunit
. @ compilation-unit $0 ;

compilationunit = <
procbody
funcbody $0
pack_body $0
procdecl $0
funcdecl $0
pack decl $0
withuseclause $0

." subunit $0
j pragma $0 >

procbody =

proc-spec "is"
{ + decl }
{ + repspec ' $0 }
{ + program_component }

@ "begin"
*+ seq_of_stmts

@ @ exceptions ! $0 3
@ "end" [identifier]";";

funcbody =

d funcspec "is"
" + dec11
,+ repspec!}
{+ programcomponent)

@ "begin"
+ seqofstmts

[exceptions I
@ "end" [designator] ";" ;

53
%,1!

META DESCRIPTION FOR ADA

* pack body
* "package" "body" identifier "is"

{+ deci)
{ + rep spec

+ program_component
[@ body_part]

-. @ "end" [identifier]

.proc decl = <
proc_spec semi

t. generic_procdecl

generic_proc_instant > ;

func decl = <
funcspecsemi
generic_funcdecl
genericfuncinstant > ;

pack decl =

pack_spec

generic_packdecl
genericpackinstant > ;

with-use clause

withclause [useclause] ;

subunit =
"separate" "(" name ")" subunitbody

pragma =

"pragma" identifier E actual param_part J ";" ;

proc spec =
"procedure" identifier [formal part $0] ;

program component =<

proc body
func:body $0
pack-body $0
task-body $0
proc stub $0
funcstub $0
pack stub $0
taskstub $0
packdecl $0
task decl $0 > ;

54

META DESCRIPTION FOR ADA

decl <

object-deci
type-deci $0

7 subtype deci $0
number deci $0
func-decl $0
proc-decl $0
pack deci $0
task deci $0
exception deci $o
rename_object $0
rename-exception $0
rename_proc $0
rename func $0
rename_pack $0
rename-task $0
use clause $0
pragma $0 >

rep-spec =<

4 length-spec

o enum_type_rep
4 record_type_rep

address spec >;

* seq-of-stints=
stint

{@ stint

exceptions=
"exception"

I + exception-handler ;

identifier=
'Az~az' I 'O9,AZaz'

func_spec=
"function" designator [formal_part]

"return" subtype indication

designator =<

identifier
operator symbol >

55

META DESCRIPTION FOR ADA
.

bodypart =

"begin"

+ seq_of_stmts

[@ exceptions !]

proc spec semi =

proc_spec ";" ;

genericprocdecl
"generic"

(+ generic formal_param }
@ procspec ";" ;

generic_proc_instant =
"procedure" identifier "is"

genericinstant ";" ;

funcspec semi =

funcspec ";" ;

genericfunc-decl
"generic"

f + generic-formal_param }
@ funcspec ";" ;

genericfunc instant =

"function" designator "is"

genericinstant ";" ;

packspec =

"package" ^ identifier "is"
{+ decl}

['a private_part]
@ "end" [^ identifier] ";" ;

generic-pack-decl

"generic"
I + generic formalparam

0 packspec ;

generic-pack_instant =
"package" identifier "is"

generic instant ";" ;

with-clause =

% , "with" name (names I ";" ;

56

META DESCRIPTION FOR ADA

.*." use clause =

"use" name I names "

name = (
identifier

index_component $0
selectedcomponent $0

slice $0
attribute $0

funccall $0
operatorsymbol $0 > ;

suDunitbody =
procbody
func_body
pack_body
task-body > ;

i. actual_param_part =

"(" paramassoc { paramassocs } ")"

formal_part =

0 "("paramdecl {paramdecls1

objectdecl =

id list "-" ["constant"] object_type
. [~initial]";;

typedecl
"type" a identifier [discrim_part '][atypebody] ";"

subtype decl
"subtype" identifier "is"

subtype_indication ";"

-I number decl =
idlist ":" " constant" initial ";"

task decl =

"task" ["type") identifier

• . [task def] ";" ;

exceptiondecl =

idlist ":" "exception" ";"

57

META DESCRIPTION FOR ADA

renameobject = a

identifier ":" name "renames" name ";" ;

renameexception =
identifier ":" "exception"

f"renames" name ";11

rename_proc =
proc_spec "renames" name ";"

renamefunc =
func_spec "renames" name ";" ;

renamepack =
.. "package" identifier "renames" name ";" ;

rename-task =
"task" identifier "renames" name ";" ;

length _spec =
"for" attribute "use" expression ";"

enumtype_rep =

"for" name "use" aggregate ";" ;

record_type_rep =
"for" name "use"

+ recordrep ;

address_spec =
"for" name "use" "at" simple_exp ";" ;

task body =

"task" "body" identifier "is"
{ + deci)
{ + rep_spec . }
{ + programcomponent }

@ "begin"
+ seq_of_stmts

@ exceptions I I
@ "end" [identifier]";"*

proc stub =

proc_spec "is" "separate" ";" ;

func stub =

funcspec "is" "separate" ";" ;

58

META DESCRIPTION FOR ADA

5 pack_stub =

"package" "body" identifier a"is"

"separate" ";11

taskstub =
"task" "body" identifier "is"

"separate" ";"

stmt=
*.' { label ' $0 } simple stmt
,.'.J,

exceptionhandler
"when" exception-choice { exceptionchoices }

! ['.11=>11

+ seqofstmts ;

subtype_indication =

name [a constraint $0 J ;
5j.

operator_symbol =

V>: char-string ;

generic formal_param =<
paramdeclsemi

"p. generic_proc

-" genericfunc
generic_type > ;

genericinstant =

"new" name [generic assocs]

private_part
"private"

{ + decl I
{ + repspec ' } ;

names =

", " name;

indexedcomponent =

name "(" expression { expressions } ")" ;

selectedcomponent =

name "." component;

59

r .

META DESCRIPTION FOR ADA

slice
name ""discrete-range)

* attribute=
* name ""identifier

* func call=
name (actual_param-part3;

param assoc
[param link Jexpression

param-assocs
* "," param assoc;

param-decl
id list "1:" "in" JE "out"3

subtype-indication (initial3;

param decls
param decl;

idjkist
~t. identifier {identifiers};

object-type = <

subtype_indication
array_type-def $0 >;

initial=
:=1 expression;

discrim part=
("discrim-decl {discrim decls}"";

type body=
*O"is" type def;

task def
"tis"

{+ entry decl
{+ rep-spec)

@ "end" (identifier3

* :~:- aggregate=
p "(" ~component assoc {component assocs ");

60

META DESCRIPTION FOR ADA

expression =<
relation
and_comp
orcomp
andthencomp $0
orelse_comp $0
xor_comp $0 >

recordrep =

"record" [align clause]
. + name location }

@ "end" "record" ";"

simple_exp =

[unaryoperator! J term {terms } ;

label
"<<" identifier ">>";

simplestmt = <

assignmentstmt
if stint
loopstmt
proc call
case stmt $0
block $0
exit stmt $0
return stmt $0
gotostmt $0
entrycall $0

1 delaystmt $0
abort stmt $0
raisestmt $0
codestmt $0
accept_stmt $0
selective wait $0

4- condentrycall $0
timed_entry_call $0
null stmt $0 >

exception_choice = <
name
"others" > ;

exception choices =
off" exceptionchoice ;

61

- % " - - -. .. % - - -% - .- . - . . - . -, -. - , ,, - -, . - ., -, . , -.-

META DESCRIPTION FOR ADA
4.

constraint = <
rangeconstraint
float_pt_constraint
fixed_pt_constraint
index constraint
discrim constraint > ;

charstring =

paramdeclsemi =
paramdecl ";" ;

genericproc =
"with" procspec [generic is] -;" ;

generic-func =

"with" func_spec [generic-is 3 ";" ;

generictype =

"type" identifier [discrimpart] "is"
generictype_def ";" ;

genericassocs =
"(" generic assoc { generic assoc } ")"

expressions =
"," expression ;

""I

component =<
identifier
"all"
operatorsymbol > ;

discreterange = <
type_range
range >;

paramlink =

identifier > ;

identifiers =
" identifier ;

discrim decl =
id list ":" a subtypeindication [initial] ;

62

, . ..-

META DESCRIPTION FOR ADA

* discrimdecls
";" discrimdecl

array_typedef = <

constrainedarray
unconstrained-array >

type_def = <
rangeconstraint
float_pt_constraint
fixed_pt_constraint
array_typedef
record_typedef
enumtypedef
accesstypedef

-'[derivedtypedef
private_typedef > ;

entry decl =
-.. "entry" identifier [entrydimension]
4.44 a [formal_part I ;" ;

relation =

simpleexp ["relation_part! J ;

andcomp =

relation - { and_relation }

orcomp =
relation { or_relation } ;

andthencomp =

4.. relation a { and_then_relation } ;

orelsecomp =-

relation { or else relation }

xor_comp =

- relation a { xor relation};

componentassoc =

[choicelink] expression;

" p\, component assocs =

"," componentassoc ;

63

" ' " " - " " " -- -' " * " ° "4,4 ', .

-7 .. - . . o-

META DESCRIPTION FOR ADA

align-clause =

"at" "mod" simpleexp ";" ;

namelocation =
name "at" simple_exp "range" range ";"

unary_operator = <

i-to

"not" > ;

term =

factor { factors I ;

terms
-.'" addop term ;

assignment_stmt =
name ":" expression ";"

if-stmt =
"if" expression "then"

+ seqof stmts

{ @ elsifpart }
[@ elsepart]
@ "end" "if" ";" ;

loopstmt =

(tag .$0] (iterationclause a] "loop"

+ seq_of stmts
* "end" a "loop" [identifier : $0 J ";" ;

*i,%' .,

* proccall =

name [actual_param_part $0] ";" ;

case stmt =
"case" expression "is"

f - { + cases}
@ "end" "case" ; ;

block =

[tag ! J] declare]
. "begin"

+ seq of stmts
@ * exceptions !]

@ "end" [a identifier .] ";" ;

64

META DESCRIPTION FOR ADA

exitstmt =

"exit" [name] [whenclause] ";" ;

return-stnt= a

"return" [expression] ";" ;

goto stmnt=
"goto" a name ";"

S,.'

entrycall =
name [actual_param_part "";

delaystmt =
"delay" a simpleexp ";" ;

abort.stnt=
"abort" name { names] ";" ;

raisestmt =
1"raise" [name] ";" ;

codestmt =

qualified exp ";" ;

accept_stmt =

"accept" name [formalpart]
acceptaction J ";" ;

selective-wait =

"select" [condition link 3
+ selectalternative

{ @ orclause }
[@ else_part]
@ "end" "select" ";" ;

cond_entry_call =

"select"
+ entrycall
[+ seq_of_stmts]

@ "else"
+ seq_of_stmts

@ "end" "select" ";" ;

nullstmt =

"null" ";" ;

65

..'-'.-'.'.' '..-.-,.-.-,, ., -,'.-, •.-...- .'.-...-.',-........--.......-..-............ ,.,,,1 .,,.- -. ,-

META DESCRIPTION FOR ADA

timed entry-call=
"select"

+ entry_call
[+ seq_of-stintsJ

+ delay-alternative
@ "end" "select"";;

range_constraint=
"range" range;

float_Pt_constraint =
"digits" ^ simple_exp range_constraintJ;

fixed_ Pt -constraint=
"delta"l simple-exp range constraintJ;

index constraint=
""discrete-range { discrete-ranges "";

discrim constraint
"(I' discrim_spec { discrim specs I"Pt

generic-is =
"is" generic_name

generic_type-def=
generic-discrete
generic_integer
generic_float
generic_fixed
array type def
access type def
private_type-def >;

generic assoc
(param-link]generic-actual-param

* . type_range=

- name [range constraint]

range=
simple_exp "."simple_exp;

66

'de

META DESCRIPTION FOR ADA

,' "constrained array =
"array" - indexconstraint ^ "of"

subtype_indication ;

unconstraintedarray =
"array" "(" index { indices } ")" "of"

subtypeindication ;

record_type_def =
"record"

+ componentlist

@ "end" "record" ;

enumtypedef =
"(" enum-lit { enum-lits }

access_typedef =
"access" subtypeindication ;

derived_typedef =

"new" subtype_indication ;

private_typedef =

["limited" J "private" ;

entrydimension =
"(" discreterange ")" ;

relation_part = (
relational
inrange $0 >;

and-relation =

"and" relation

or relation =
"or" relation ;

and-then relation =
"and" "then" relation ;

or else relation =
"or" "else" relation ;

xorrelation =
'. "xor" relation ;

67

META DESCRIPTION FOR ADA

choice-link =
choice { choices I "=>" ;

factor =

primary [power ! $0] ;

factors =
mulop factor ;

addop =

"&" $0 > ;

elsif part =
"elsif" expression "then"

+ seq-of-stints ;

else_part =

"else"
+ seq_of stmts ;

identifier ":" ;

iteration-clause =
while clause
for clause $0 > ;

cases =
"when" choice { choices I "a>-

+ seq_ofstmts ;

declare =
"declare"

{ + dec11
{ + repspec ! }
4 + program_component } ;

when clause =

"when" expression ;

qualifiedexp =
* ..,. name ", agg or_exp ;

68

META DESCRIPTION FOR ADA

• " .*- accept action =
"do"

+ seqofstmts

@ "end" [identifier] ;

4.,.-. condition-link =

"when" expression "=>" ;

selectalternative = <
acceptalternative
delay alternative
terminate > ;

or-clause =

"or" [conditionlink]
+ select-alternative

delayalternative =

delaystmt
[@ seqofstmts J

discrete ranges =

"," discrete-range ;

-, discrim spec =
[discrim link] expression ;

.' discrim specs =
",, " discrimspec

.,

genericname = <
name
,,<>, > ;

4€ generic discrete -

C,.. o-

generic integer =
"range" "<>" ;

genericfloat =
"delta" a "<> ;

genericfixed =
"digits" "0" I

69

META DESCRIPTION FOR ADA

generic actual param =

expression
name
subtype indication > ;

index =
name "range" "<>";

indices =

index;

componentlist = (
components
nullcomp > ;

enum lit = (
identifier
char-lit > ;

enum lits =

"" enum lit

relational=
relop simple_exp ;

inrange =

simpleexp "not" I ial

rangeorsubtype ;

choice =

simpleexp
discreterange
"others" > ;

choices =

*S ."." choice ;

power =

"" primary ;

* mul op= <

"mod" $0
"rem" $0 > ;

70

," 1 -

META DESCRIPTION FOR ADA

primary =

+" decimal-number
name

V .nestedexp
based number $0
enum lit $0
char string $0
funccall $0

- "null" $0
aggregate $0
allocator $0
type-conversion $0
qualified exp $0 > ;

while-clause -

"while" expression;

for clause =
"for" identifier "in" ["reverse"]

discrete-range ;

agg_orexp =

aggregate
nested exp > ;

accept-alternative =

accept_stmt
[@ seq_ofstmts] ;

terminate =

"terminate" ";"

discrim link =

name { names) "=>" ;

components =

* I @ component decl
{ @ variant part J ""

null comp -

"null" ";" ;

charlit =

%71

*

.4 .o '

"' *_ " ,.%, - . ; ., ""'
°

• ? .- ++ I. ,...-'. ,,' ' + + '+, '" t . . . m , , +. + - =. + . .

META DESCRIPTION FOR ADA

.' rel-op=<

If H
II/=

4,, H <1tt

range or subtype = <
range
subtype-indication > ;

decimal-number =
integer [decimal_part ! $0]

[exponent ! $0 J ;

nested_exp =

"(" expression ")" ;

based-number =

integer "#" based-integer E based-decimal ' 3
S"#" [exponent !

0D allocator=
"new" name [allocation J ;

" typeconversion =
name "(" expression ")" ;

component decl =
4Q idlist ":" a objecttype [initial] ";"

variant-part =
"case" name "is"

" + variant-case)
@ "end" "case" ";"

-,

integer =
' 09, { ,091 , ;

decimal_part =
- integer

exponent =
"E" [sign] integer;

72

-,e e -,eX W Z.F * -**.'- - *-

META DESCRIPTION FOR ADA

based integer=
* -'9!AZaz' 'O91AZI _ az'

based decimal =
1.1f based-integer;

allocation <
nested_exp
aggregate
discrim constraint
index-constraint >

variant-case=
"when" choice (choices I ">

+ component-list;

sign <

73

META DESCRIPTION FOR ADAO

APPENDIX III
META DESCRIPTION FOR ADAO

This appendix contains the META description for the $0 subset of the

previous ADA description. It was the subset implemented in the prototype

compiler for the environment.

compilation =

compilation unit

compilation-unit = <
procbody > ;

procbody =

. procspec "is"
+ decl

{ + programcomponent }
@ "begin"

+ seq of stmts
. "end" [identifier J ";" ;

proc_spec =

"procedure" ^ identifier ;

deci =<

objectdecl > ;

program-component = <
procbody > ;

seqof_stmts

stmt
{@ stmt};

identifier =

'AZ:az' { '091AZ:laz'

objectdecl
id list ":" ["constant" J objecttype

- initial J ";"

stmt =

simple stmt

74

N-

I' . . - - - . - '. -.---. ,

META DESCRIPTION FOR ADAO

.* . id list =

identifier { identifiers

object_type = <

subtype indication >

initial =

:=1. expression ;

simple stmt = <
assignmentstmt
if stmt

loopstmt

proccall > ;

identifiers =

". "," identifier ;

subtype_indication =

name ;

expression =<
relation
andcomp

orcomp > ;

assignmentstmt =

name ":=" expression ";' ;

., if stmt =

"if" expression "then"
+ seq of stmts

{ @ elsifpart }
[@ elsepart J

@ "end" "if" ";"

loop stmt =

[iteration-clause J "loop"

+ seq_of_stmts
@ "end" "loop" ";" ;

proc_call =
name "

name =<
" - identifier > ;

75

META DESCRIPTION FOR ADAO

relation
simple exp [relation_part ,]

andcomp =

relation { and relation }

or_comp =
relation { or relation }

elsifpart =
"elsif" expression "then"

+ seqofstmts ;

else_part =

"else"
+ seqof stmts ;

iteration-clause = <

while-clause >

simple_exp =

[unary_operator,] term { terms};

relation_part = <
relational > ;

and-relation =

"and" relation ;

or-relation =

"or" relation ;

while-clause =
"while" expression

unary_operator =<

$8 + ,,

"not" >

term =

factor { factors }

terms =

addop term ;

76

_7.1. * . 7 OF

META DESCRIPTION FOR ADAO

" . , relational =

rel_op simpleexp ;

* factors =

mul_op factor

add op =<

it-o >

rel op= <

11=11

a,' I ,

,,> ,,

">=" > ;

primary =<
, decimal-number
0name

nestedexp > ;

mul op = <

Si/" > ;

decimal number =

integer

nestedexp =

"(" expression ")"

integer =

'09' { '091 , 1

77

*1
SYSTEM USER MANUAL

APPENDIX IV

SYSTEM USER MANUAL

IV.1. INTRODUCTORY MANUAL

This manual contains a brief introduction to how to use the syntax directed

editor environment. It does not go into a lot of detail about the individual

tools, but tries to give enough information to get a user started into the system.

A, After reviewing the information contained in this manual the user should have

enough knowledge to begin using the environment. It is strongly recommended

that the user review the user manuals for the individual tools before attempting

any major projects. These manuals appear immediately following this

introductory manual. This insures an understanding of all of the available

features of the tools and permits the optimal utilization of the environment.

PREPARING THE ENVIRONMENT

There are a few things which need to be done before the editor is entered

to set up the initial environment in which the editor will work. These involve

the two preprocessors, config and meta.

Config is responsible for configuring the editor so that it is comfortable

- for you to use. It is invoked by typing

config *

The "*" is optional. It specifies that any existing configuration (stored in a

file called "terminal.tdf") be erased. After the first configuration you probably

want to leave the "*" of f of the command, or else you will have to reenter all

of the information.

When invoked, config will proceed to ask you a number of questions. A

"Y" or "y" is a "yes!' response, anything else is considered a "no". Your

"' response to a yes or no question is not echoed to your screen, but more

78

SYSTEM USER MANUAL

questions will appear depending on your response. The first few questions are

self explanatory.

A "yes" response to changing the input commands drops you into another

series of questions. The name of each command will appear, along with the

previous definition if it exists. You must enter something for each command,

even if you don't think you will be using it. Each command must be unique,

-. : and must begin with a non-printable character. The commands you enter will

be echoed to the terminal. Non-printable characters will echo as a "-" followed

by the code shifted to a printable character. Thus a control-X will be echoed

as "-X". The commands are described in more detail in the SYNDE user

manual.

The next section of config asks about automatic output configuration. This

is something left over from an earlier version and can simply be answered "no".

The final section deals with the output commands. Most of these (the

ones marked with "**") are of no importance unless you are on an unknown

type of terminal. Simply hit a return for all of those entries. The three

important ones to enter are

* display tab : the character string used to display a tab. Probably a
number of spaces.

* mark elided material : the symbol you want displayed in place of an
elided subtree. "+" is a good choice, as is an appropriate string

" divide window : a single character which is used to fill the window
header, the suggested one is "-"

Once the terminal is configured to your satisfaction you should check to

see that the language syntax description is available for the editor to use. This

is a file called "something.sdf" (for ADA it would be "ada.sdf"). If this file

exists you are ready to start. If not, type

* 79

. - -

". "-", ", . .".. .'... '. .'" " . . - " '".-. ".-.... . -.. "." ,' . " , .- " -" , ",

SYSTEM USER MANUAL

meta ada

or whatever the name of the language is. When it is finished running the

".sdf" file should be present. Any problems encountered here can probably be

solved by looking at the META reference manual, or talking to the person

responsible for maintaining the environment.

INSIDE THE EDITOR

Once all of the preprocessing is done you are ready to enter the editor.

It is invoked by its name, synde, followed by the file to be edited and the

language to be used. To create an ADA program in a file called "test" you

would type:

synde test ada

The language name can be omitted if the file already exists from a previous use

of the editor. (Don't try to edit files created by different types of editors.

They will not work.)

Once you are in the editor you can begin creating the program. The

window header tells you the name of the syntax tree node you are at, and it is

displayed as a highlighted section on the screen. By moving down the syntax

tree (using the down command) you can arrive at the leaves where you enter

information or make selections. Moving up, down, left, or right will be

movements in the syntax tree and the results will be visible on the screen.

Remember that these are all tree movements, not screen movements.

The editor will automatically generate as much of the syntax tree as it can,

but it usually can not go far without some help from you. There are three

major types of nodes that require your input : 1) conditionals, where you have

to tell the editor to insert that node; 2) alternations, where you make a choice

about the type of thing to insert; and 3) sets, another form of alternation.

80

6--t elteeio oinetta oe)atraios hr o aeacoc

i.!0!:* *4~ " .

'-"4.-. ,-4 , , V ,4
" "" " " "" " '-\ \, flL' , ',, 44 , -, ? 'o." " '€ ,.."' ."/ ... '..". - , .-. • * .'. :, -

-S'

SYSTEM USER MANUAL
,ro

Conditional nodes are those which appear surrounded by braces ("[" and

"1", or "" and ""). These are items which are not needed by the simplest

of programs, but may be needed for yours. Conditional nodes are added to the

tree by typing the first letter of the name in braces. Once it has been selected

the braces will be removed.

Alternations are where you select one of a list of alternatives. As long as

help is turned on (the default is on), a list of choices available to you will

appear at the bottom of the screen. To make a selection you type enough of

your choice to be unambiguous. The editor helps you by doing command

completion wherever possible. Each letter you type restricts the available

choices, and the current choices are displayed. The editor fills in as much of

the command as possible, and when only one possibility remains it accepts that.

The concept should become very clear the first time you try it.

The third type of node requiring your actions is the set. This represents a

place where a single character is to be entered. It is displayed in a

conventional shorthand notation. Thus 'AZ' means any letter between capital A

and capital Z, and '09!AZ az' means any digit or letter. Selection of a set

element is done by simply typing the character desired.

That concludes this brief summary of how to use the syntax directed editor

environment. Movement to the other tools of the environment from the editor

is possible simply by invoking the appropriate commands, but these will not be

discussed here. Once again the user is encouraged to read the manuals for each

tool to obtain a more detailed understanding of what happens in each one.

81

SYSTEM USER MANUAL

S° .IV.2. SYNTAX DIRECTED EDITOR MANUAL

This manual covers the functions and commands of the syntax directed

editor. It includes information on how to enter the editor, a summary of all of

the commands, and how to create the program.

ENTERING THE EDITOR

The editor is invoked by its name, synde, followed by the name of the file

to be edited. If the file does not exist, the filename must be followed by the

name of the language to be used. To create a new ADA program in a file

called "test" you would type

synde test ada

To edit an already existing file called "test" the command is simply

synde test

Inclusion of the language name at the end of the command will cause no

Cadverse effects if the file already exists it will simply be ignored by the editor.

All of the files to be edited must be created through the editor. Editing files

created by other forms of editors or creation commands will not work properly.

EDITOR COMMANDS

The particular set of keystrokes used to invoke a particular command is

determined by the user during the system configuration. (See the Config user

manual for details.) This section discusses what each command does when

invoked. Each command will respond with either a change in the current

display or an appropriate message to the display.

Movement within the editor is based on movement within the syntax tree.

The "focus" is the part of the syntax tree which is currently being dealt with by

the editor. The focus is the root of the subtree being considered by the editor.

The focus image is displayed in the main window of the display screen by some

""" form of highlighting, usually reverse video. The name of the node will appear

82

-. - - - - - --... - . , . . . w

SYSTEM USER MANUAL

" in the window header. Most of the movement commands are movements to

adjacent nodes such as parent, child, or sibling.

The MOVE RIGHT command moves the focus to the right sibling of the

focus. If no right sibling exists, the tree is ascended until some ancestor is

found which has a right sibling. This right sibling then becomes the focus.

This corresponds to an inorder traversal of the tree.

The MOVE LEFT command moves the focus to the left sibling of the

focus. If no left sibling exists, the tree is ascended until some ancestor is

found which has a left sibling. This left sibling then becomes the focus. This

corresponds to a reverse of an inorder traversal of the tree.

The MOVE LONG RIGHT command moves the focus to the right and

past any siblings which are generated from the same repetion element in a

production.

• .. The MOVE LONG LEFT command moves the focus to the left and past

any siblings which are generated from the same repetion element in a

production.

The MOVE UP command moves the focus to the parent of the focus, if it

exists. This is equivalent to examining a higher syntactical level. If the parent

has children other than the current focus, this will expand the current area of

interest, forcing an expansion of the highlighted area on the screen. This may

be viewed as a "zoom-out" command.

The MOVE DOWN command moves the focus to the leftmost child of the

focus if one exists. This corresponds to a lower, or more specific, syntactical

level. A reduced viewing area, or "zoom-in" will occur if the focus has more

83
-- . - . - - . . - . - . -.i . .

1-4.; -- -._-. . .

SYSTEM USER MANUAL

than one child.

The MOVE LONG UP command is equivalent to a series of move up

commands until the highlighted display area is expanded. It corresponds to

moving up the syntax tree until a node with more than one child is

encountered.

The MOVE LONG DOWN command is equivalent to a series of move

down commands until the highlighted area is reduced. This corresponds to,.4

moving down the syntax tree until a node with more than one child is

:.4 ,encountered, and selecting the left child of that node.

S.* The MOVE TO LEAF command descends the tree from the current focus

in an inorder traversal until a leaf node is encountered. This provides a quick

way of moving to the bottom of the tree.

The editor stores the location of the most recent focus prior to the current

focus. The MOVE TO LAST FOCUS command moves the focus to the stored

focus.

-*-" The program tree also contains storage space for up to ten markers, or

pointers into the syntax tree. Markers zero through four may be set by the

user, while markers five through nine are reserved by the system for marking

.rrors from other tools in the environment. The MARK command may be used

.. , to clear an existing marker at the focus, or to set any of the user markers, zero

through four, to the current focus. The GO command may be used to move

the focus to any of the set markers, the root of the program tree, or the root

of the clipping tree. Markers are preserved between editing sessions.

Those are the commands for moving the focus within the current tree.

4d'.

84

.,"I.

SYSTEM USER MANUAL

N%- The next set of editing commands deal with operations which change the syntax

tree.

The INSERT RIGHT command inserts a conditional element as the right

sibling of the focus. A valid conditional element must be capable of being

inserted at that location. This is determined by the production definition of the

parent node, which also determines the type of element to be inserted. An

optional element may be inserted only if it does not already exist. Insertion of

consecutive identical, unestablished repeaters is not allowed by the editor,

because it is considered a useless, though valid, operation. Insertion is done

only for a element which is the immediate right sibling of the focus. Thus it

may be necessary to establish certain unneeded conditionals when two or more

successive conditionals occur in order to move the focus to the proper place.

These unneeded elements may be removed once the desired element has been

inserted.

The INSERT LEFT command is identical to the insert right command

except that it establishes a conditional element as the left sibling of the focus.

The CLIP command copies the subtree designated by the focus to a

,5. "clipping tree". The previous clipping is discarded, and the program tree

remains unchanged. This corresponds to the "cut" of a "cut and paste"

operation. The clipping is retained until another clipping occurs. Changes may

be made to the clipping tree by using the go command to move to the root of

the clipping tree and then editing that tree. Clipping may occur at any node

except a leaf. This is to prevent inadvertent loss of a clipping tree. A leaf

node is a degenerate subtree and is thus easily regenerated.

The COPY command attaches a copy of the clipping tree to the program

tree at the focus. The previous subtree of the focus is irrecoverably lost. This

.85

."

SYSTEM USER MANUAL

corresponds to the "paste" portion of the "cut and paste". The syntactic type of

the clipping tree root must match that of the focus, or, if the focus is an

alternation, of one of the alternatives. In the second case the clipping tree is

copied as the child of the focus. The syntax type appears as the name in the

window header. The clipping tree type may be obtained by displaying the

clipping in the second window.

The KILL command deletes the focus and it's subtrees from the program

tree, if possible. If the focus is a conditional element the node and any

subtrees are simply deleted. If the node is not a conditional it must be

retained for syntactic correctness. In that case all of the children and subtrees

of the focus are deleted, and if it is a concatenation, any automatic expansions

are performed. This generates a "clean" node, exactly as if this was the first

occurrence of that node. The subtrees lost in a kill operation cannot be

0 recovered. If possible recovery is desired the delete command should be used.

The DELETE command corresponds to a clip operation immediately

followed by a kill. The effect is the same as that of a kill except that the

deleted tree is stored in the clipping tree. The old tree may be recovered by

doing a copy command at the focus. The delete operation is equivalent to a

kill if the focus is a leaf. Deletions while editing the clipping tree are not

allowed.

The next three operations are not commands of themselves, but are the

means of altering the leaf nodes. The first of these is CONDITIONAL NODE

ESTABLISHMENT. Conditional nodes are those which appear on the display

surrounded by braces ("[and "I", or "I" and "}"). Alternatives and sets are

established simply by making a selection as discussed below. For a

concatenation, typing the first character of the displayed name establishes the

86

S.

p A b=.. A - --? .- 4'

SYSTEM USER MANUAL

node. Once a node is established the braces are removed. If the node is a

repeater, another unestablished repeater of the same type is inserted immediately

to the right of the focus.

ALTERNATIVE SELECTION occurs when a leaf node has an alternation

definition and the user must select one of the available alternatives. Selection is

accomplished by typing the name of the desired selection, with command

completion by the editor. Command completion involves the filling in of as

much of the command as possible by the editor. This reduces the number of

keystrokes required and speeds the selection process.

Sets are a form of alternation where the possible alternatives are single

characters. SET SELECTION is accomplished by the typing of the desired

character. A conventional shorthand is used for sets. Thus 'AZ' means any

character between capital A and capital Z, while '09 AZ az' represents any letter

or digit. When a set element is selected it replaces the set name on the

display.

The final set of commands are those which provide the user with control

over the display of the program and provide the interface to other tools in the

programming environment.

is.-The HELP command toggles the user request for help menus. The default

"is for help to be turned on. The only menu currently available shows a list of

alternatives available when the focus is at an alternation node.

The ELIDE command toggles the elide flag for the focus node. When.,

"-'. turned on, the elide flag limits the extent of the tree display. While in the

elided section of the tree, no portion of the tree outside of the elided section

will be displayed. When the focui moves up the tree past the elided node, the

87

SYSTEM USER MANUAL

display will suppress display of that node and it's subtrees and replace it with

the string provided by the user during configuration. This feature is useful in

indicating levels of modularity within the program.

The WINDOW command controls the presence of a second window on the

screen. When present the window can be used to display the clipping tree, or

any of the subtrees indicated by markers zero through nine. The second

window is for display purposes only; no editing will be done in this window.

However any changes made in the main window will appear in the second

window if they affect the subtree displayed there. The second window may be

opened or closed at any time. The header for the second window is the name

of the root of the subtree being displayed.

The REDRAW SCREEN command clears out the current screen and

reproduces the current correct view. This is useful if transmission errors cause

the screen display to become garbled.

The SAVE FILE command causes the program and any recent changes to

be written to the file from which the program was originally obtained. This

allows the user to save changes prior t%: the automatic save which is performed

when the editor is exited.

The WRITE FILE command allows the writing of the program currently

being edited to a file of another name. If the specified file already exists, the

user is given the option of deleting the old file.

The INVOKE COMPILER command causes the language specific compiler

for the program being edited to be loaded and executed. The compiler flags

any program errors using markers five through nine, and halts when compilation

is complete or all the markers have been used. After compilation. exccuron

88

•%7,e

OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING
J R KOSLOW 05 DEC 83 AFIT/GCS/MA/83D-3

UNCLASSIFIED F/G 9/2 N

ElEND

1 . :t
.-

0 [L 5-8

=41.

.taa

*L3.

lull ll_4 jj,

IHII '- -'

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

•

SYSTEM USER MANUAL

returns to the editor and the focus is set to error marker five, if set, or to the

program tree root.

The INVOKE INTERPRETER command causes the loading and execution

of the language interpreter. If errors are encountered, return to the editor is

exactly like that of the compiler. See the specific manuals for interpreter

commands.

The INVOKE LISTER command causes loading and execution of the

language independent program lister. This generates a text image of the

program tree being edited which is suitable for human reading or as input to

conventional, text-based environment tools such as compilers. Unestablished

conditional nodes are not printed as these represent unnecessary, unincluded

nodes. Unexpanded required nodes are shown by the node name enclosed in

angle brackets ("" and ">"). Elided subtrees are not suppressed in the

generated image. Control returns to the editor when listing is complete.

The INVOKE SYNDE command causes the syntax directed editor to be

invoked for a new file. This is often referred to as visiting another file. The

user is prompted for the file name and language.

The EXIT EDITOR command terminates the editing session. The program

tree is saved, system cleanup occurs, and the session is terminated.

IV.3. TERMINAL CONFIGURATION MANUAL

The terminal configuration program, called config, is used to adapt the

editor to a particular user. It is also used to obtain information about the

terminal from the user, particularly if the terminal is an unknown or uncommon

model. The program interactively prompts the user for the required

",C information, and stores the obtained information in a terminal description file.

89

A- '
-,

SYSTEM USER MANUAL

>' ,Config is invoked by typing:

config *

where the "*" is optional. Inclusion of the "*" indicates that the current

terminal description file (terminai.tdf) is to cleared before running the config

program. The user is then given the opportunity to enter new information or

modify the current information.

Config will ask a number of questions which will require a yes or no

answer. An input of "Y" or "y" is taken as a "yes", any other key being

interpreted as a "no".

The first information requested by config deals with the terminal's lines

per screen, characters per line, and number of lines to be used in the second

window. The prompt will include that value and an inclusive range of valid

values. Simply type the new value, or a carriage return to retain the old value.

Invalid values are rejected and reprompted.

The next set of prompts deal with the input command sequences. Details

of each command's functions are available in the Synde manual. Config

presents the old sequence (if it exists) and the option to change it or proceed to

the next item. All input commands must exist and must be unique. They

should begin with a non-printable character. To enter a command sequence

simply type the sequence of keys desired to invoke that function. As each key

is hit it is echoed to the display. Control characters are echoed as "x where x

is the control character plus an offset of 64 to obtain a printable character.

Thus a line-feed (ASCII value 10) will be displayed as J. Config presents a

number of opportunities to reexamine the sequences so mistakes can be corrected

with another pass through the input commands.

The next question asks about automatic output configuration. This is a

90

- ~ ~ - L7. iLL *.* .** .1 I -a . . d * * . 6

SYSTEM USER MANUAL

carryover from a previous version and is only of interest if you would like to

see what the escape sequences are for some of the output commands. Usually

the answer to this question should be "no".

Finally config will request information about the display output sequences.

Most of these do not need to be entered unless you are on a terminal whose

type is not known to the system. The editor only refers to those sequences if

it does not know what to do. Those entries are marked below, and in the

config program, with "**" at the beginning of their name. All of the output

sequences are entered and echoed exactly like the input command sequences.

The sequences prompted for are :.

* **initialize terminal : A sequence sent to the terminal at the start of
an editing session to allow for any special startup.

" display tab : Used for indentation in the program. Usually a number
of spaces.

* mark elided material : Used to represent an elided program subtree in
the display.

* divide windows : a single character used to fill the header line of
each window

" **clear screen : Clear the terminal screen

" **position cursor : Prefix of command to position the cursor on the
screen. This sequence is followed by the display line plus 32 and
display column plus 32. Other forms of cursor movement are handled
for the known terminals but cannot be manually entered.

" **erase to end of line : Clear the display from the cursor location to
the end of the line.

" **enter reverse video mode : Used to set the terminal into a
highlighting mode to distinguish the fociL

* **exit reverse video mode : exit the highlighting mode set by "enter
reverse video mode"

" **terminate terminal Sent to the terminal at the end of an editing
session to handle any special terminal cleanup.

91

SYSTEM USER MANUAL

IV.4. META PREPROCESSOR

This manual covers material dealing with the Meta preprocessor which

transforms a textual syntax description into a syntax description which can be

used by the tools in the environment. The short discussion of how to use the

preprocessor is followed by a rather lengthy discussion of how to create the

textual syntax description. Those users who are interested only in using availalle

language descriptions need only read the first section.

RUNNING THE META PREPROCESSOR

The Meta preprocessor is invoked by a command of the form

meta filename subset index
im

where filenamesyn is the name of a textual meta syntax description. The

subsetindex is an optional argument indicating the subset elements to be

eliminated from the description. Meta creates a syntax description file of the

name "filename.sdf" where filename is the name given in the argument list,

possibly extended by digits from the subset-index. For example the command:

meta ada

will create the syntax description ada.sdf from the textual description ada.syn.

The subsetjndex argument is a "#" followed by a series of digits in the

range zero through seven. This indicates that any element in the textual

description marked with the indicated subset numbers be eliminated from the

syntax description generated by Meta. (See page 95 for more information on

language subsets.) The command

meta ada #0

would create the syntax description file adaO.sdf from the textual description

ada.ayn while removing those elements marked with subset zero.

92

SYSTEM USER MANUAL

LANGUAGE DESCRIPTION

The textual syntax description input for Meta is presented as a sequence of

production rules, each of which defines a non-terminal of the language. The

first production rule must define the non-terminal which represents the language

goal symbol. Appendix I specifies the format to be followed in a Meta

description.

Each production re is of one of two forms : a concatenation or an

alternation. A concatenation is an ordered sequence of elements which specify a

template to be laid into the program tree structure beneath a node of tat type.

Individual elements in a concatenation list may be conditionals. Conditionals are

either options (appearing zero or one time) or repeaters (appearing zero or more

times). Options are enclosed in square brackets ("[" and "]"), while repeaters

are enclosed in braces ("" and ")"). Both may contain only one element inside

the delimiters. The hide indicator ("!") may be used to mark a conditional

element so that it is not automatically synthesized into the syntax tree. This is

useful for elements of the language which are rarely used. Each concatenation

must contain at least one unconditional element to be synthesized into the syntax

tree.

An alternation is a list of alternatives, only one of which may be selected.

Each alternative must be a single unconditional element. The alternative list is

surrounded by angle brackets ("(" and ">") to distinguish it from a

concatenation.

Each syntactic element of the definition may be a non-terminal identifier,

a literal string enclosed in quotes, or a set construct. Each non-terminal must

be defined exactly once in the syntax description. Literal strings are used to

. represent the reserved words and delimiters used by the language. The set

93

SYSTEM USER MANUAL

construct is typically used in specifying identifiers or numbers whose individual

character components are not specified until the synthesis process.

A set construct represents a compact way of showing an alternation whose

alternatives are single characters. Elements in the set may be single characters

or pairs of characters representing an inclusive range in the ASCII character set.

Thus 'AZ' represents any letter between capital A and capital Z. while

'09: AZ: az' represents any letter or digit. Meta requires that the set alternatives

be presented in ascending ASCII order.

FORMAT CONTROLS

In addition to the syntax description of the language, the editor and other

tools require information about the format to be used when displaying the

program or generating a text file of the program. Thus the Meta description

includes format controls of three types : space marks, newline marks, and

0indentation.

A space mark ("") preceding or following an element results in the

placement of a corresponding space in the program tree image. A newline mark

("@") preceding an element causes a new line to be generated on the display

followed by the proper number of tabs for the current level of indentation.

An indentation mark ("+") preceding an element indicates that the current

indentation level is to be increased and causes a new indented line to be

generated. All elements in the subtree below the node corresponding to that

element will be indented, after which the former indentation level is restored.

Format controls for an element take effect only when the element is

synthesized into the program tree. Format controls for conditional elements

must be placed carefully to insure a desirable appearance whether the conditional

element is present or not.

94

nt' 9h.L .

SYSTEM USER MANUAL

LANGUAGE SUBSETS

Alternative and conditional elements in the Meta description may be

marked with a subset indicator. This indicator is a dollar sign ("$") followed by

a series of digits in the range zero through seven ("0" to "). Each digit

indicates a subset in which the marked element will not appear. This can be

used to restrict the use of certain constructs, or reduce the complexity of the

language available. These applications are particularly useful in an academic or

other learning environment.

The Meta preprocessor can be instructed to omit the subset elements by

using the subset-index argument in the invocation command. When all

references to a non-terminal are removed, its production rule is no longer

required. All such unreferenced rules are eliminated from the syntax description

to conserve space. Appendix III contains the $0 subset of the description in

Appendix II.

DESIGNING A META LANGUAGE DESCRIPTION

", Creating a Meta description of a language can be a difficult and time

consuming process. Reference to an existing definition of the language,

particularly an extended BNF description, can substantially reduce the effort

required. This section discusses the major differences between extended BNF

and Meta, and the changes needed to design the Meta description.'p
.Meta requires a simpler form of expression than is generally available in

extended BNF. In particular, Meta disallows the use of complex expressions

within options, repetitions, or alternations. In many cases a new non-terminal

4, must be introduced in Meta to replace these complex expressions. For example,

," the ADA reference manual contains the following extended BNF definition for a

term:

term ::-

95

SYSTEM USER MANUAL

'.' factor { multiplyingoperator factor J

Having two elements inside the repeater (multiplyingoperator and factor) is not

allowed in a Meta description. A corresponding Meta description would be

term =

factor { factors ;

factors =
mul-op factor ;

Most of the problems encountered in transforming extended BNF to Meta are

of this nature.

The design of the syntax description for a syntax directed editor

environment requires the designer to address issues usually not of concern in the

syntax description. Because the editor enforces a standard format for program

display, format control characters must be added to the syntax description in

such a way as to provide a desirable display whether all conditionals are present
C

or not. The description must also be written to provide a reasonable human
interface. One area of concern involves conditional elements and alternatives,

elements which require user interaction. These represent decision points for the

user and as such should be minimized, or at least placed in a position where a

decision seems natural.

If an alternation contains an element which is itself an alternation the user

is required to make two successive decisions. This can be reduced to a single

decision by including each alternative of the second element as an alternative of

the first. Applying this to the ADA reference manual definition for primary

"" and literal:

is primary ::
literal I aggregate : name I allocator
function call I type_conversion

. I qualified expression I (expression)

96

-. :.. .

SYSTEM USER MANUAL

-* literal :-
numeric literal 1 enumeration literal
characterstring 1 null

it reduces to the equivalent Meta definition

primary = (
decimalnumber name nestedexpression
basednumber enumlit charstring
func call "null" aggregate allocator
type_conversion qualifiedexpression>;

by including the alternatives for literal, as well as those of numeric_literal,

within primary. Also note that the alternatives have been rearranged in an

attempt to name the more frequently used ones first, as this is the order they

appear to the user.

Another design concern is the selection of non-terminal names. These

names will often appear in incomplete code fragments indicating the type of

(p object to be placed in that location. The need for names with mnemonic value

must be balanced against a reasonable length to avoid cluttering the screen.

The limitations required by Meta for the descriptions it handles can cause

complications in the editing process. For example the ADA reference manual

defines an identifier as

identifier ::=
letter { [underscore] letter or digit }

which eliminates the possibility of double or trailing underscores. An equivalent

Meta definition obtained by removing the complex expression is

identifier =
'AZlaz { scoredigit letter } ;

score digit_letter =

2 "_" '091AZlaz' u

This requires an additional keystroke for each subsequent letter or digit. An

alternative Meta definition to eliminate the extra production and provide a

97

NAN AN 1 .4** 4* '2.:.~~..:-:..:-

,, .. .*:. r .. -. ., , _ - . A.. . _A A _ . -. .-. _ .. o.- , _* '. F . ', . . .-*.-', .

SYSTEM USER MANUAL

\ smoother format for identifier entry is

identifier =
IAZIazt { '09:AZ: iaz' I

However this allows illegal double or trailing underscores which must be detected

by the compiler. The added ease of identifier entry, a common occurrence, was

considered significant enough to warrant deferring detection of such trivial

errors to the compiler phase (Reference Ferguson). Fortunately most of the

design decisions that need to be made do not require compromising the syntactic

validity of the programs produced.

98

:I

GLOSSARY

APPENDIX V

GLOSSARY

BNF Backus-Naur Form, a commonly used method of describing a
language syntax

Conditional node
a syntax tree node whose presence is not required for syntactic
correctness. Includes options and repeaters.

Editing focus the subtree being examined by the user at a particular time

Establish a node inclusion of a conditional node into the tree structure

Extended cursor means of indicating an ee & focus even if it is larger than
one character. Usually ac(plished by highlighting the editing

* focus

Format controls symbols of a META des -i which control the display of
the syntax tree in a form v is recognizable to the user

Frontier the leaves of the syntax tree

Hidden element a conditional element of the syntax description which is not

automatically shown to the user

Highlight mode a means of setting a certain section of a display so that it is
different than the surrounding display. Often accomplished by
switching the background color for that section

Input commands the keystroke sequences used by the user to invoke the
commands of the editor

Language goal symbol
the non-terminal symbol which is the starting symbol of the
language syntax definition

Modular elision specifying levels of modularity within the syntax tree. The
entire subtree below the elided node is treated as a single unit,
and is displayed as such

Option element syntax description element which may appear zero or one time
"I

Output command sequence

set of keystrokes sent to the terminal to accomplish the various
type of screen changes

Production a rule of a syntax description describing the expansion of a
non-terminal element

99

-,*pu.. . - u .,-*. .. : .~-..- .- *

GLOSSARY

Program tree synthesis
the creation and modification of a syntax tree as determined by
the syntax definition and user actions

Repeater element
syntax description element which my appear zero or more times

Software development environment
the collection of interconnected tools within which the user

,S, develops computer software

Syntax description
a textual description (often BNF or Meta) of the rules which
govern the syntax of a computer language

Syntax directed editor
a tool for entering a program into the computer which
automatically generates correct program syntax based on the
language being used

Syntax tree tree representation of a program. Nodes of the tree represent
the terminal and non-terminal symbols of the syntax description

User friendly easy to understand and use by anyone with reasonable cause to
be using the tool

4%

X,

a100
a'o

s .f.

.. , , , -" .. ,....... '.' ... ' --. -.. ...

VITA

John R. Koslow was born 5 June 1960 in Biloxi, Mississippi. He graduated

as class valedictorian from Hayfield High School in Alexandria, Virginia in 1978.

He graduated from Carnegie -Mellon University in 1982 with a degree of

Bachelor of Science in Mathematics (Computer Science) / Economics. He

received a commission in the USAF through the ROTC program. His first

Iassignment, in June of 1982, was to the School of Engineering Air Force

Institute of Technology where he began work as a graduate student in computer

science.

Permanent address: 546 Hallock Street

Pittsburgh, PA 15213

:'C

101
.i

SECURITY CLASSIFICATION OF THIS PAGE

* * REPORT DOCUMENTATION PAGE
in. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UW (I3S3 i L _________________

2&. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

___________________________________ gitoL. rzoo pli (LLIAS4
-. 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Oiswt% 0alro) i~eT.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

G& NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

(If applicable)

School of .-nrineering AFIT/ETG
6c. ADDRESS Itily. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Air For-(, lrv titute of Technol~ogy
hright- ittersof AFB, OH 45413

ft. NAME OF FUNDING/SPONSORING ISi. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If pplicsbde)

Sc. ADDRESS IWity. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UN11
ELE ME NT NO. NO. NO. NO.

it. TITLE (inacude Security Classification)

See B~ox V

%12. PERSONAL AUTHORIS)
Koslow, John hirhardi

13 TYPesi FRPR13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) ill. P4GJdOUNT
3& TYPE i OFRPOTFROM 8 3/0 4 0 83/1? I 3 Dec 05

16. SUPPLEMENTARY NOTATION AP ~fd I 9 bil release: 1AW AFt 190-17.

Dednlot .~ d Pr~siotaIDevelopee

17. COSATI CODES 11S SUBJECT TERMS (Continue on ,wuera. if 1gm Pd~nmui' bIJumw

FIEL GOp >U.Ryntax directed editor, language oriented editoi

0 I ADA, Software development environment

19. ABSTRACT (Contimnue on reverse if necessary and identify by block, number)

~1i~h: A -Y1tAX DIRkECTED EDITOR ENVIRONN'T

~11SI C1tlMAI~:Role Black, M~ajor, U.SAF

Thir loctn..nt dwscribes the implpentation and modification of ii softwarre
* dcvelopmvi.t environment for a medium size computer which is based on~ a

'-yrt f d ir -,ted ed itor.- Although it was developed for use with the AJA
profrr mrmi- *7Tnu~E most of the environment is driven by a Longuage
'yli~ de. ription, nnd can therefore process virtun1ly any programmin-

lzrngt'ge-. This environment is an extension of a prototype developed
previourl, .t the Air Force Institute of Technology.

20. OISTRIBUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIPIED/UNLIMITED 10SAME AS RPT. 0 DTIC USERS 0 UthCIASSIFIED

22&. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
(include A via Code)

John n~. K ::1vN. ?I.t, USA F (513).,55-5533A'TL~

D D FORM 1473. 83 APR EDITION OP 1 JAN 73 IS OBSOLETE. UNCLASIFIED
SECURITY CLASSIFICATION OF THIS P

